Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications

被引:1
作者
Lin, Xiaosheng [1 ]
Yang, Dachun [1 ]
Yang, Sibei [2 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
关键词
Hardy space; Ball quasi-Banach function space; Non-negative self-adjoint operator; Atom; Molecule; Schrolder group; Spectral multiplier; Littlewood-Paley function; HP SPACES; L-P; INTEGRALS; DUALITY; BOUNDS;
D O I
10.1007/s40304-023-00376-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (chi, d, mu) be a doubling metric measure space in the sense of R. R. Coifman and G. Weiss, L a non-negative self-adjoint operator on L-2(chi) satisfying the Davies-Gaffney estimate, and chi(chi) a ball quasi-Banach function space on X satisfying some extra mild assumptions. In this article, the authors introduce the Hardy type space H-X, (L) (chi) by the Lusin area function associated with L and establish the atomic and the molecular characterizations of H-X,H- L (chi). As an application of these characterizations of H-X,H- L (chi), the authors obtain the boundedness of spectral multiplies on H-X,H- L (chi). Moreover, when L satisfies the Gaussian upper bound estimate, the authors further characterize H-X,H- L (chi) in terms of the Littlewood-Paley functions g(L) and g(lambda), (*)(L) and establish the boundedness estimate of Schrodinger groups on H-X,H- L (chi). Specific
引用
收藏
页数:53
相关论文
共 71 条