On Some Open Problems about P-Spaces, Strongly Quasi Baire Spaces and Choice

被引:1
作者
Tachtsis, Eleftherios [1 ]
机构
[1] Univ Aegean, Dept Stat & Actuarial Financial Math, Karlovassi 83200, Samos, Greece
关键词
Axiom of choice; weak axioms of choice; P-space; strongly quasi Baire space; permutation model; Pincus' transfer theorem; AXIOM;
D O I
10.1007/s00025-023-02049-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In set theory without the full power of the axiom of choice (AC),were solve open problems from Keremedis, Olfati and Wajch "OnP-spaces and G delta-sets in the absence of the Axiom of Choice" on the deductive strength of statements concerning P-spaces and strongly quasi Bairespaces via positive and independence results. For some of the independence results, we construct three new per mutation models of ZFA+<not sign>AC,where ZFA denotes the ZermeloFraenkel set theory with atoms. Part of our ZFA-independence proofs are transferable to ZF(i.e. Zermelo-Fraenkel set theory without AC)
引用
收藏
页数:24
相关论文
共 12 条
[2]   Finiteness classes arising from Ramsey-theoretic statements in set theory without choice [J].
Brot, Joshua ;
Cao, Mengyang ;
Fernandez-Breton, David .
ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (06)
[3]   Unions and the axiom of choice [J].
De la Cruz, Omar ;
Hall, Eric J. ;
Howard, Paul ;
Keremedis, Kyriakos ;
Rubin, Jean E. .
MATHEMATICAL LOGIC QUARTERLY, 2008, 54 (06) :652-665
[4]   Hindman's theorem in the hierarchy of choice principles [J].
Fernandez-Breton, David .
JOURNAL OF MATHEMATICAL LOGIC, 2024, 24 (01)
[5]  
Hoft H., 1994, Notre Dame J. Form. Log., V35, P413
[6]  
HOWARD P, 1998, MATH SURVEYS MONOGRA, V59
[7]  
Jech T., 1973, AXIOM CHOICE
[8]   On P-spaces and Gδ-sets in the absence of the Axiom of Choice [J].
Keremedis, Kyriakos ;
Olfati, Alireza ;
Wajch, Eliza .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (02) :194-236
[9]  
Luchli H., 1962, COMMENTARII MATH HEL, V37, P1
[10]   ZERMELO-FRAENKEL CONSISTENCY RESULTS BY FRAENKEL-MOSTOWSKI METHODS [J].
PINCUS, D .
JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (04) :721-743