Relational Space-Time and de Broglie Waves

被引:0
作者
Lyons, Tony [1 ]
机构
[1] South East Technol Univ, Dept Comp & Math, Waterford, Ireland
关键词
MECHANICS; EQUATIONS; LIE;
D O I
10.1007/s10701-023-00715-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Relative motion of particles is examined in the context of relational space-time. It is shown that de Broglie waves may be derived as a representation of the coordinate maps between the rest-frames of these particles. Energy and momentum are not absolute characteristics of these particles, they are understood as parameters of the coordinate maps between their rest-frames. It is also demonstrated the position of a particle is not an absolute, it is contingent on the frame of reference used to observe the particle.
引用
收藏
页数:26
相关论文
共 45 条
[1]  
[Anonymous], 1934, HELV PHYS ACTA
[2]  
[Anonymous], 1954, Geometrical Mechanics and de Broglie Waves
[3]   Wave-particle duality of C60 molecules [J].
Arndt, M ;
Nairz, O ;
Vos-Andreae, J ;
Keller, C ;
van der Zouw, G ;
Zeilinger, A .
NATURE, 1999, 401 (6754) :680-682
[5]   MACH PRINCIPLE AND THE STRUCTURE OF DYNAMICAL THEORIES [J].
BARBOUR, JB ;
BERTOTTI, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1982, 382 (1783) :295-306
[6]   GRAVITY AND INERTIA IN A MACHIAN FRAMEWORK [J].
BARBOUR, JB ;
BERTOTTI, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 38 (01) :1-27
[7]   RELATIONAL CONCEPTS OF SPACE AND TIME [J].
BARBOUR, JB .
BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 1982, 33 (03) :251-274
[8]   RELATIVE-DISTANCE MACHIAN THEORIES [J].
BARBOUR, JB .
NATURE, 1974, 249 (5455) :328-329
[9]   A search for the de Broglie particle internal clock by means of electron channeling [J].
Catillon, P. ;
Cue, N. ;
Gaillard, M. J. ;
Genre, R. ;
Gouanere, M. ;
Kirsch, R. G. ;
Poizat, J. -C. ;
Remillieux, J. ;
Roussel, L. ;
Spighel, M. .
FOUNDATIONS OF PHYSICS, 2008, 38 (07) :659-664
[10]   On the geometric approach to the motion of inertial mechanical systems [J].
Constantin, A ;
Kolev, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (32) :R51-R79