Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via Uqsl2 Symmetry

被引:3
作者
Chernyak, Dmitry [1 ,2 ]
Gainutdinov, Azat M. [3 ]
Jacobsen, Jesper Lykke [1 ,2 ,4 ]
Saleur, Hubert [2 ,5 ]
机构
[1] Univ PSL, Sorbonne Univ, Univ Paris, Lab Phys,Ecole Normale Super,ENS,CNRS, F-75005 Paris, France
[2] Inst Phys Theor, Paris Saclay, CEA, CNRS, F-91191 Gif Sur Yvette, France
[3] Univ Tours, Inst Denis Poisson, CNRS, Parc Grandmont, F-37200 Tours, France
[4] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, F-75005 Paris, France
[5] USC Phys & Astron Dept, Los Angeles, CA 90089 USA
关键词
quantum integrable models; non-diagonal K-matrices; Verma modules; Temper-ley-Lieb algebras; K-MATRICES; MODEL; SEGMENT; EQUATION; VERTEX; ANALOG; ROOTS;
D O I
10.3842/SIGMA.2023.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive by the traditional algebraic Bethe ansatz method the Bethe equa-tions for the general open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [J. Phys. A 37 (2004), 433-440, arXiv:hep-th/0304092]. The tech-nical difficulties due to the breaking of U(1) symmetry and the absence of a reference state are overcome by an algebraic construction where the two-boundary Temp erley-Lieb Hamiltonian is realised in a new Uqsl2-invariant spin chain involving infinite-dimensional Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages, arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur- Weyl duality between Uqsl2 and the two-boundary Temp erley-Lieb algebra. In this frame-work, the Nepomechie condition turns out to have a simple algebraic interpretation in terms of quantum group fusion rules.
引用
收藏
页数:47
相关论文
共 60 条
[1]  
Ang M., 2021, arXiv
[2]   Modified algebraic Bethe ansatz for XXZ chain on the segment - III - Proof [J].
Avan, J. ;
Belliard, S. ;
Grosjean, N. ;
Pimenta, R. A. .
NUCLEAR PHYSICS B, 2015, 899 :229-246
[3]   Equivalences between spin models induced by defects [J].
Bajnok, Z. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[4]   On generalized Q-systems [J].
Bajnok, Zoltan ;
Granet, Etienne ;
Jacobsen, Jesper Lykke ;
Nepomechie, Rafael I. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
[5]   Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory [J].
Baseilhac, Pascal ;
Koizumi, Kozo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[6]   Modified algebraic Bethe ansatz for XXZ chain on the segment - II - general cases [J].
Belliard, S. ;
Pimenta, R. A. .
NUCLEAR PHYSICS B, 2015, 894 :527-552
[7]   Modified algebraic Bethe ansatz for XXZ chain on the segment - I: Triangular cases [J].
Belliard, Samuel .
NUCLEAR PHYSICS B, 2015, 892 :1-20
[8]   Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz [J].
Belliard, Samuel ;
Crampe, Nicolas .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
[9]   Exercises with the universal R-matrix [J].
Boos, Herman ;
Goehmann, Frank ;
Kluemper, Andreas ;
Nirov, Khazret S. ;
Razumov, Alexander V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
[10]   Exact solution of XXZ spin chain with unparallel boundary fields [J].
Cao, JP ;
Lin, HQ ;
Shi, KJ ;
Wang, YP .
NUCLEAR PHYSICS B, 2003, 663 (03) :487-519