共 50 条
Superconductivity and fermionic dissipation in quantum Hall edges
被引:10
|作者:
Schiller, Noam
[1
]
Katzir, Barak A.
[2
]
Stern, Ady
[1
]
Berg, Erez
[1
]
Lindner, Netanel H.
[2
]
Oreg, Yuval
[1
]
机构:
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Technion, Phys Dept, IL-320003 Haifa, Israel
基金:
欧盟地平线“2020”;
关键词:
NON-ABELIAN ANYONS;
STATES;
D O I:
10.1103/PhysRevB.107.L161105
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Proximity-induced superconductivity in fractional quantum Hall edges is a prerequisite to proposed realiza-tions of parafermion zero modes. A recent experimental work [Gill et al., Phys. Rev. X 12, 021057 (2022)] provided evidence for such coupling, in the form of a crossed Andreev reflection signal, in which electrons enter a superconductor from one chiral mode and are reflected as holes to another, counterpropagating chiral mode. Remarkably, while the probability for crossed Andreev reflection was small, it was stronger for nu = 1/3 fractional quantum Hall edges than for integer ones. We theoretically explain these findings, including the relative strengths of the signals in the two cases and their qualitatively different temperature dependencies. An essential part of our model is the coupling of the edge modes to normal states in the cores of Abrikosov vortices induced by the magnetic field, which provide a fermionic bath. We find that the stronger crossed Andreev reflection in the fractional case originates from the suppression of electronic tunneling between the fermionic bath and the fractional quantum Hall edges. Our theory shows that the mere observation of crossed Andreev reflection signal does not necessarily imply the presence of localized parafermion zero modes, and suggests ways to identify their presence from the behavior of this signal in the low-temperature regime.
引用
收藏
页数:6
相关论文