Endotypes of intraoperative hypotension during major abdominal surgery: a retrospective machine learning analysis of an observational cohort study

被引:24
作者
Kouz, Karim [1 ]
Brockmann, Lennart [1 ]
Timmermann, Lea Malin [1 ]
Bergholz, Alina [1 ]
Flick, Moritz [1 ]
Maheshwari, Kamal [2 ,3 ]
Sessler, Daniel I. [2 ]
Krause, Linda [4 ]
Saugel, Bernd [1 ,5 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Ctr Anesthesiol & Intens Care Med, Dept Anesthesiol, Hamburg, Germany
[2] Cleveland Clin, Dept Outcomes Res, Cleveland, OH USA
[3] Cleveland Clin, Anesthesiol Inst, Dept Gen Anesthesiol, Cleveland, OH USA
[4] Univ Med Ctr Hamburg Eppendorf, Inst Med Biometry & Epidemiol, Hamburg, Germany
[5] Outcomes Res Consortium, Cleveland, OH 44195 USA
关键词
anaesthesia; blood pressure; cardiovascular dynamics; cardiac output; haemodynamic monitoring; intra-operative hypotension; MEAN ARTERIAL-PRESSURE; CARDIAC-OUTPUT ESTIMATION; NONCARDIAC SURGERY; CLUSTERING METHODS; ACUTE KIDNEY; HEART-RATE; PROPOFOL; THERMODILUTION; ASSOCIATION; BRADYCARDIA;
D O I
10.1016/j.bja.2022.07.056
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Intraoperative hypotension is associated with myocardial injury, acute kidney injury, and death. In routine practice, specific causes of intraoperative hypotension are often unclear. A more detailed understanding of underlying haemodynamic alterations of intraoperative hypotension may identify specific treatments. We thus aimed to use ma-chine learning -specifically, hierarchical clustering -to identify underlying haemodynamic alterations causing intra-operative hypotension in major abdominal surgery patients. Specifically, we tested the hypothesis that there are distinct endotypes of intraoperative hypotension, which may help refine therapeutic interventions.Methods: We conducted a secondary analysis of intraoperative haemodynamic measurements from a prospective observational study in 100 patients who had major abdominal surgery under general anaesthesia. We used stroke vol-ume index, heart rate, cardiac index, systemic vascular resistance index, and pulse pressure variation measurements. Intraoperative hypotension was defined as any mean arterial pressure <= 65 mm Hg or a mean arterial pressure between 66 and 75 mm Hg requiring a norepinephrine infusion rate exceeding 0.1 mg kg -1 min -1. To identify endotypes of intraoperative hypotension, we used hierarchical clustering (Ward's method). Results: A total of 615 episodes of intraoperative hypotension occurred in 82 patients (46 [56%] female; median age: 64 [57, 73] yr) who had surgery of a median duration of 270 (195, 335) min. Hierarchical clustering revealed six distinct intra-operative hypotension endotypes. Based on their clinical characteristics, we labelled these endotypes as (1) myocardial depression, (2) bradycardia, (3) vasodilation with cardiac index increase, (4) vasodilation without cardiac index increase, (5) hypo-volaemia, and (6) mixed type.Conclusion: Hierarchical clustering identified six endotypes of intraoperative hypotension. If validated, considering these intraoperative hypotension endotypes may enable causal treatment of intraoperative hypotension.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 39 条
  • [1] Perioperative Quality Initiative consensus statement on the physiology of arterial blood pressure control in perioperative medicine
    Ackland, Gareth L.
    Brudney, Charles S.
    Cecconi, Maurizio
    Ince, Can
    Irwin, Michael G.
    Lacey, Jonathan
    Pinsky, Michael R.
    Grocott, Michael P. W.
    Mythen, Monty G.
    Edwards, Mark R.
    Miller, Timothy E.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2019, 122 (05) : 542 - 551
  • [2] Associations of Intraoperative Radial Arterial Systolic, Diastolic, Mean, and Pulse Pressures with Myocardial and Acute Kidney Injury after Noncardiac Surgery A Retrospective Cohort Analysis
    Ahuja, Sanchit
    Mascha, Edward J.
    Yang, Dongsheng
    Maheshwari, Kamal
    Cohen, Barak
    Khanna, Ashish K.
    Ruetzler, Kurt
    Turan, Alparslan
    Sessler, Daniel, I
    [J]. ANESTHESIOLOGY, 2020, 132 (02) : 291 - 306
  • [3] Disease Mechanisms of Perioperative Organ Injury
    Conrad, Catharina
    Eltzschig, Holger K.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (06) : 1730 - 1750
  • [4] Severe bradycardia after remifentanil
    DeSouza, G
    Lewis, MC
    TerRiet, MF
    [J]. ANESTHESIOLOGY, 1997, 87 (04) : 1019 - 1020
  • [5] REFLEX BRADYCARDIA DURING SURGERY
    DOYLE, DJ
    MARK, PWS
    [J]. CANADIAN JOURNAL OF ANAESTHESIA-JOURNAL CANADIEN D ANESTHESIE, 1990, 37 (02): : 219 - 222
  • [6] Comparison between an uncalibrated pulse contour method and thermodilution technique for cardiac output estimation in septic patients
    Franchi, F.
    Silvestri, R.
    Cubattoli, L.
    Taccone, F. S.
    Donadello, K.
    Romano, S. M.
    Giomarelli, P.
    McBride, W. T.
    Scolletta, S.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2011, 107 (02) : 202 - 208
  • [7] Investigating diversity of clustering methods: An empirical comparison
    Gelbard, Roy
    Goldman, Orit
    Spiegler, Israel
    [J]. DATA & KNOWLEDGE ENGINEERING, 2007, 63 (01) : 155 - 166
  • [8] Cardiac output estimation by pulse wave analysis using the pressure recording analytical method and intermittent pulmonary artery thermodilution A method comparison study after off-pump coronary artery bypass surgery
    Greiwe, Gillis
    Luehsen, Katharina
    Hapfelmeier, Alexander
    Rogge, Dorothea
    Kubik, Mathias
    Schulte-Uentrop, Leonie
    Saugel, Bernd
    [J]. EUROPEAN JOURNAL OF ANAESTHESIOLOGY, 2020, 37 (10) : 920 - 925
  • [9] Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
  • [10] Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis
    Hatib, Feras
    Jian, Zhongping
    Buddi, Sai
    Lee, Christine
    Settels, Jos
    Sibert, Karen
    Rinehart, Joseph
    Cannesson, Maxime
    [J]. ANESTHESIOLOGY, 2018, 129 (04) : 663 - 674