Alternative probe hybridization buffers for target RNA depletion and viral sequence recovery in NGS for poultry samples

被引:4
作者
Bakre, Abhijeet [1 ,3 ]
Kariithi, Henry M. [1 ,2 ]
Suarez, David L. [1 ]
机构
[1] USDA ARS, Exot & Emerging Avian Viral Dis Res Unit, SEPRL, Athens, GA USA
[2] Kenya Agr & Livestock Res Org, Biotechnol Res Inst, POB 57811-00200,Kaptagat Rd, Loresho, Nairobi, Kenya
[3] 934 Coll Stn Rd, Athens, GA 30605 USA
关键词
Poultry; Avian orthoavulavirus-1 (AOAV-1); Non-targeted host depletion; Metagenomics; RNaseH; VIRUS;
D O I
10.1016/j.jviromet.2023.114793
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Non-targeted next generation sequencing (NGS) is widely applied to identify the diversity of pathogens in field samples. However, abundance of host RNA (especially rRNA) and other environmental nucleic acids can reduce the abundance of pathogen specific reads of interest, reduce depth of coverage and increase surveillance costs. We presently deplete chicken-and selected bacterial-specific rRNAs in poultry field RNA samples with complementary DNA probes in a commercially available probe hybridization buffer followed by digestion of the RNA:DNA hybrids with RNase H. Because the current buffer is an expensive special order reagent of proprietary composition, we tested in-house and other commercially available buffers and identified a viable alternative that yields equivalent host rRNA depletion and viral-specific reads in poultry samples as the current special order reagent but at a reduced cost.
引用
收藏
页数:7
相关论文
共 23 条
[1]   The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update [J].
Afgan, Enis ;
Baker, Dannon ;
Batut, Berenice ;
van den Beek, Marius ;
Bouvier, Dave ;
Cech, Martin ;
Chilton, John ;
Clements, Dave ;
Coraor, Nate ;
Gruening, Bjoern A. ;
Guerler, Aysam ;
Hillman-Jackson, Jennifer ;
Hiltemann, Saskia ;
Jalili, Vahid ;
Rasche, Helena ;
Soranzo, Nicola ;
Goecks, Jeremy ;
Taylor, James ;
Nekrutenko, Anton ;
Blankenberg, Daniel .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W537-W544
[2]   Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics [J].
Akacin, Ilayda ;
Ersoy, Seymanur ;
Doluca, Osman ;
Gungormusler, Mine .
MICROBIOLOGICAL RESEARCH, 2022, 264
[3]   MIQE: A Step Toward More Robust and Reproducible Quantitative PCR [J].
Bustin, Stephen A. ;
Wittwer, Carl T. .
CLINICAL CHEMISTRY, 2017, 63 (09) :1537-1538
[4]   Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection [J].
Charalampous, Themoula ;
Kay, Gemma L. ;
Richardson, Hollian ;
Aydin, Alp ;
Baldan, Rossella ;
Jeanes, Christopher ;
Rae, Duncan ;
Grundy, Sara ;
Turner, Daniel J. ;
Wain, John ;
Leggett, Richard M. ;
Livermore, David M. ;
O'Grady, Justin .
NATURE BIOTECHNOLOGY, 2019, 37 (07) :783-+
[5]   Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer [J].
Dolja, Valerian V. ;
Koonin, Eugene V. .
VIRUS RESEARCH, 2018, 244 :36-52
[6]   Chicken rRNA Gene Cluster Structure [J].
Dyomin, Alexander G. ;
Koshel, Elena I. ;
Kiselev, Artem M. ;
Saifitdinova, Alsu F. ;
Galkina, Svetlana A. ;
Fukagawa, Tatsuo ;
Kostareva, Anna A. ;
Gaginskaya, Elena R. .
PLOS ONE, 2016, 11 (06)
[7]   Single-Nucleotide Polymorphism Analysis to Select Conserved Regions for an Improved Real-Time Reverse Transcription-PCR Test Specific for Newcastle Disease Virus [J].
Ferreira, H. L. ;
Suarez, D. L. .
AVIAN DISEASES, 2019, 63 (04) :625-633
[8]   Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison [J].
Gao, Yang ;
Wolf, Lauren K. ;
Georgiadis, Rosina M. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (11) :3370-3377
[9]   NCBIBLAST: a better web interface [J].
Johnson, Mark ;
Zaretskaya, Irena ;
Raytselis, Yan ;
Merezhuk, Yuri ;
McGinnis, Scott ;
Madden, Thomas L. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W5-W9
[10]  
Li H., 2013, arXiv