Process invariant Schmitt Trigger non-volatile 13T1M SRAM cell

被引:1
作者
Singh, Damyanti [1 ]
Pandey, Neeta [1 ]
Gupta, Kirti [2 ]
机构
[1] Delhi Technol Univ, Dept Elect & Commun Engn, Delhi 110042, India
[2] Bharati Vidyapeeths Coll Engn, Dept Elect & Commun Engn, Delhi 110063, India
来源
MICROELECTRONICS JOURNAL | 2023年 / 135卷
关键词
Memristor; nvSRAM; Process invariant; Schmitt trigger; SRAM; DESIGN; MARGIN; ARRAY;
D O I
10.1016/j.mejo.2023.105773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Supply voltage scaling along with the use of non-volatile memory (NVM) device has proven to be the viable approaches for reducing both static and dynamic power consumption in SRAM's. The non-volatile SRAM has power down mode, however at lower supply voltage, the performance of the cell is affected due to process variations. So, to overcome this issue, this paper presents a 13-transistor process invariant nvSRAM cell. The cell introduces Schmitt Trigger invertor nvSRAM cell structure instead of CMOS inverter in existing cells. This modification provide tolerance to process variations by making the proposed cell operate at the lowest minimum power supply voltage at 6 sigma failure point in comparison to others, by considering both static and dynamic measure. Also, the proposed cell consumed 33.4X lower leakage power than the existing one at their respective Vmin.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] Adee S., 2008, IEEE SPECTRUM, P1
  • [2] Statistical analysis of SRAM cell stability
    Agarwal, Kanak
    Nassif, Sani
    [J]. 43RD DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2006, 2006, : 57 - +
  • [3] RRAM-based non-volatile SRAM cell architectures for ultra-low-power applications
    Bazzi, Hussein
    Harb, Adnan
    Aziza, Hassen
    Moreau, Mathieu
    Kassem, Abdallah
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2021, 106 (02) : 351 - 361
  • [4] The impact of intrinsic device fluctuations on CMOS SRAM cell stability
    Bhavnagarwala, AJ
    Tang, XH
    Meindl, JD
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2001, 36 (04) : 658 - 665
  • [5] Biolek D, 2013, RADIOENGINEERING, V22, P945
  • [6] Overview of candidate device technologies for storage-class memory
    Burr, G. W.
    Kurdi, B. N.
    Scott, J. C.
    Lam, C. H.
    Gopalakrishnan, K.
    Shenoy, R. S.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2008, 52 (4-5) : 449 - 464
  • [7] Chang MF, 2012, ASIA S PACIF DES AUT, P329, DOI 10.1109/ASPDAC.2012.6164968
  • [8] Low Store Energy, Low VDDmin, 8T2R Nonvolatile Latch and SRAM With Vertical-Stacked Resistive Memory (Memristor) Devices for Low Power Mobile Applications
    Chiu, Pi-Feng
    Chang, Meng-Fan
    Wu, Che-Wei
    Chuang, Ching-Hao
    Sheu, Shyh-Shyuan
    Chen, Yu-Sheng
    Tsai, Ming-Jinn
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (06) : 1483 - 1496
  • [9] MEMRISTOR - MISSING CIRCUIT ELEMENT
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 507 - +
  • [10] A new combined methodology for write-margin extraction of advanced SRAM
    Gierczynski, Nicolas
    Borot, Bertrand
    Planes, Nicolas
    Brut, Hugues
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES, PROCEEDINGS, 2007, : 97 - +