A machine learning approach for corrosion small datasets

被引:52
作者
Sutojo, Totok [1 ,2 ]
Rustad, Supriadi [1 ,2 ]
Akrom, Muhamad [1 ,3 ]
Syukur, Abdul [2 ]
Shidik, Guruh Fajar [2 ]
Dipojono, Hermawan Kresno [3 ]
机构
[1] Dian Nuswantoro Univ, Fac Comp Sci, Res Ctr Mat Informat, Semarang 50131, Indonesia
[2] Dian Nuswantoro Univ, Fac Comp Sci, Doctoral Program Comp Sci, Semarang 50131, Indonesia
[3] Bandung Inst Technol, Adv Funct Mat Res Grp, Bandung 40132, Indonesia
关键词
INHIBITION EFFICIENCY; BENZIMIDAZOLE DERIVATIVES; GAS-INDUSTRY; MILD-STEEL; PREDICTION; DESIGN; MODEL; OIL;
D O I
10.1038/s41529-023-00336-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we developed a QSAR model using the K-Nearest Neighbor (KNN) algorithm to predict the corrosion inhibition performance of the inhibitor compound. To overcome the small dataset problems, virtual samples are generated and added to the training set using a Virtual Sample Generation (VSG) method. The generalizability of the proposed KNN + VSG model is verified by using six small datasets from references and comparing their prediction performances. The research shows that for the six datasets, the proposed model is able to make predictions with the best accuracy. Adding virtual samples to the training data helps the algorithm recognize feature-target relationship patterns, and therefore increases the number of chemical quantum parameters correlated with corrosion inhibition efficiency. This proposed method strengthens the prospect of ML for developing material designs, especially in the case of small datasets.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements
    Alrefaee, Salhah Hamed
    Rhee, Kyong Yop
    Verma, Chandrabhan
    Quraishi, M. A.
    Ebenso, Eno E.
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2021, 321
  • [2] [Anonymous], 2020, Scikit-learn. scikit-learn. scikit-learn
  • [3] Measuring the impacts of travel influencers on bicycle travellers
    Asan, Kubra
    [J]. CURRENT ISSUES IN TOURISM, 2022, 25 (06) : 978 - 994
  • [4] Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface
    Belghiti, M. E.
    Echihi, S.
    Dafali, A.
    Karzazi, Y.
    Bakasse, M.
    Elalaoui-Elabdallaoui, H.
    Olasunkanmi, L. O.
    Ebenso, E. E.
    Tabyaoui, M.
    [J]. APPLIED SURFACE SCIENCE, 2019, 491 : 707 - 722
  • [5] A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine
    Beltran-Perez, Carlos
    Serrano, Andres A. A.
    Solis-Rosas, Gilberto
    Martinez-Jimenez, Anatolio
    Orozco-Cruz, Ricardo
    Espinoza-Vazquez, Araceli
    Miralrio, Alan
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [6] Overview of Machine Learning Process Modelling
    Brumen, Bostjan
    Cernezel, Ales
    Bosnjak, Leon
    [J]. ENTROPY, 2021, 23 (09)
  • [7] Density Functional Theory and Electrochemical Studies: Structure-Efficiency Relationship on Corrosion Inhibition
    Camacho-Mendoza, Rosa L.
    Gutierrez-Moreno, Evelin
    Guzman-Percastegui, Edmundo
    Aquino-Torres, Eliazar
    Cruz-Borbolla, Julian
    Rodriguez-Avila, Jose A.
    Alvarado-Rodriguez, Jose G.
    Olvera-Neria, Oscar
    Thangarasu, Pandiyan
    Medina-Franco, Jose L.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (11) : 2391 - 2402
  • [8] Integrating virtual sample generation with input-training neural network for solving small sample size problems: application to purified terephthalic acid solvent system
    Chen, Zhong-Sheng
    Zhu, Qun-Xiong
    Xu, Yuan
    He, Yan-Lin
    Su, Qing-Lin
    Liu, Yiqing C.
    Nagy, Zoltan K.
    [J]. SOFT COMPUTING, 2021, 25 (08) : 6489 - 6504
  • [9] A PSO based virtual sample generation method for small sample sets: Applications to regression datasets
    Chen, Zhong-Sheng
    Zhu, Bao
    He, Yan-Lin
    Yu, Le-An
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 59 : 236 - 243
  • [10] Reviewing machine learning of corrosion prediction in a data-oriented perspective
    Coelho, Leonardo Bertolucci
    Zhang, Dawei
    Van Ingelgem, Yves
    Steckelmacher, Denis
    Nowe, Ann
    Terryn, Herman
    [J]. NPJ MATERIALS DEGRADATION, 2022, 6 (01)