Bone marrow stromal cell-derived hepcidin has antimicrobial and immunomodulatory activities

被引:3
作者
Krepuska, Miklos [1 ,2 ]
Mayer, Balazs [1 ,3 ]
Vitale-Cross, Lynn [1 ]
Myneni, Vamsee D. [1 ]
Boyajian, Michael K. [1 ]
Nemeth, Krisztian [1 ,3 ]
Szalayova, Ildiko [1 ]
Cho, Ted [1 ]
Mc Clain-Caldwell, Ian [1 ]
Gingerich, Aaron D. [4 ]
Han, Huiling [5 ]
Westerman, Mark [5 ]
Rada, Balazs [4 ]
Mezey, Eva [1 ]
机构
[1] NIA, ASCS, NIDCR, Bethesda, MD USA
[2] Univ Hosp Zurich, Dept Neuroradiol, Zurich, Switzerland
[3] Semmelweis Univ, Dept Dermatol Venerol & Dermato Oncol, Stem Cell Lab, Budapest, Hungary
[4] Univ Georgia, Coll Vet Med, Dept Infect Dis, Athens, GA 30602 USA
[5] Intrins Life Sci, La Jolla, CA USA
关键词
MESENCHYMAL STEM-CELLS; IRON; PEPTIDE; EXPRESSION; MACROPHAGES; DISRUPTION; DEFENSE; PATHWAY; BINDING; MODEL;
D O I
10.1038/s41598-024-54227-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone marrow stromal cells (BMSCs) have immunomodulatory activities in numerous species and have been used in clinical trials. BMSCs also make antibacterial agents. Since hepcidin is known to have antimicrobial effects in fish, we wondered if it might also be used as an antimicrobial agent by mammalian BMSCs. In the present study, we show hepcidin expression in both mouse (mBMSC) and human BMSCs (hBMSC). We observed a hBMSC hepcidin-dependent degradation of ferroportin in HEK-293 reporter cells in vitro. In human and mouse bone marrows (BM) we detected hepcidin-positive BMSCs in close proximity to hematopoietic progenitors. The conditioned culture medium of hBMSCs significantly reduced bacterial proliferation that was partially blocked by a hepcidin-neutralizing antibody. Similarly, medium in which hepcidin-deficient (Hamp-/-) mouse BMSCs had been grown was significantly less effective in reducing bacterial counts than the medium of wild-type cells. In a zymosan-induced peritonitis mouse model we found that mBMSC-derived hepcidin reduced the number of invading polymorphonuclear (PMN) cells in the peritoneal cavity. Our results show that BMSC-derived hepcidin has antimicrobial properties in vitro and also reduces inflammation in vivo. We conclude that hepcidin should be added to the expanding arsenal of agents available to BMSCs to fight infections and inflammation.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli [J].
Yu, Yang ;
Wu, Rui-Xin ;
Gao, Li-Na ;
Xia, Yu ;
Tang, Hao-Ning ;
Chen, Fa-Ming .
CELL ADHESION & MIGRATION, 2016, 10 (04) :342-359
[22]   Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches [J].
Yu, Zhuo ;
Yang, Wenqian ;
He, Xiaoxiao ;
Chen, Chiqi ;
Li, Wenrui ;
Zhao, Limin ;
Liu, Ligen ;
Liu, Junling ;
Xie, Li ;
Zhang, Yaping ;
Zheng, Junke .
BLOOD, 2022, 139 (10) :1529-1540
[23]   Local Upregulation of Stromal Cell-Derived Factor-1 After Ligament Injuries Enhances Homing Rate of Bone Marrow Stromal Cells in Rats [J].
Shimode, Kazumi ;
Iwasaki, Norimasa ;
Majima, Tokifumi ;
Funakoshi, Tadanao ;
Sawaguchi, Naohiro ;
Onodera, Tomohiro ;
Minami, Akio .
TISSUE ENGINEERING PART A, 2009, 15 (08) :2277-2284
[24]   Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer [J].
Raz, Yael ;
Cohen, Noam ;
Shani, Ophir ;
Bell, Rachel E. ;
Novitskiy, Sergey V. ;
Abramovitz, Lilach ;
Levy, Carmit ;
Milyavsky, Michael ;
Leider-Trejo, Leonor ;
Moses, Harold L. ;
Grisaru, Dan ;
Erez, Neta .
JOURNAL OF EXPERIMENTAL MEDICINE, 2018, 215 (12) :3075-3093
[25]   Stromal Cell-Derived Factor-1 Stimulates Cell Recruitment, Vascularization and Osteogenic Differentiation [J].
Eman, Rhandy M. ;
Oner, F. Cumhur ;
Kruyt, Moyo C. ;
Dhert, Wouter J. A. ;
Alblas, Jacqueline .
TISSUE ENGINEERING PART A, 2014, 20 (3-4) :466-473
[26]   Targeted Disruption of Bone Marrow Stromal Cell-Derived Gremlin1 Limits Multiple Myeloma Disease Progression In Vivo [J].
Clark, Kimberley C. ;
Hewett, Duncan R. ;
Panagopoulos, Vasilios ;
Plakhova, Natalya ;
Opperman, Khatora S. ;
Bradey, Alanah L. ;
Mrozik, Krzysztof M. ;
Vandyke, Kate ;
Mukherjee, Siddhartha ;
Davies, Gareth C. G. ;
Worthley, Daniel L. ;
Zannettino, Andrew C. W. .
CANCERS, 2020, 12 (08) :1-20
[27]   Stromal Cell-Derived Factor-1α-Directed Chemoattraction of Transiently CXCR4-Overexpressing Bone Marrow Stromal Cells into Functionalized Three-Dimensional Biomimetic Scaffolds [J].
Thieme, Sebastian ;
Ryser, Martin ;
Gentsch, Marcus ;
Navratiel, Katrin ;
Brenner, Sebastian ;
Stiehler, Maik ;
Roelfing, Jan ;
Gelinsky, Michael ;
Roesen-Wolff, Angela .
TISSUE ENGINEERING PART C-METHODS, 2009, 15 (04) :687-696
[28]   Stromal cell-derived factor-1 accelerates bone regeneration through multiple regenerative mechanisms [J].
Ando, Yuji ;
Ishikawa, Jun ;
Fujio, Masahito ;
Matsushita, Yoshihiro ;
Wakayama, Hirotaka ;
Hibi, Hideharu ;
Yamamoto, Akihito .
JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY, 2019, 31 (04) :245-250
[29]   Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells [J].
Russell, Keith A. ;
Chow, Natalie H. C. ;
Dukoff, David ;
Gibson, Thomas W. G. ;
LaMarre, Jonathan ;
Bette, Dean H. ;
Koch, Thomas G. .
PLOS ONE, 2016, 11 (12)
[30]   Pre-conditioning of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Increases Their Immunomodulatory Capacity [J].
Caffi, Valeria ;
Espinosa, Gabriel ;
Gajardo, Gonzalo ;
Morales, Natalia ;
Carolina Duran, Maria ;
Uberti, Benjamin ;
Moran, Gabriel ;
Plaza, Anita ;
Henriquez, Claudio .
FRONTIERS IN VETERINARY SCIENCE, 2020, 7