Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica

被引:9
|
作者
Gong, Luping [1 ]
Li, Bingbing [1 ]
Zhu, Tao [1 ]
Xue, Baoping [2 ]
机构
[1] Henan Univ Urban Construct, Coll Life Sci & Engn, Pingdingshan, Peoples R China
[2] Wuhan Univ, Coll Life Sci, Dept Plant Sci, State Key Lab Hybrid Rice, Wuhan, Peoples R China
来源
关键词
dirigent gene family; evolution; expression analysis; stress responses; Setaria italica; DOMAIN-CONTAINING PROTEIN; DIRIGENT PROTEINS; LECTIN DOMAIN; MODEL; ARABIDOPSIS; VIRIDIS; DEFENSE; LIGNAN; SITES;
D O I
10.3389/fpls.2023.1243806
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Dirigent (DIR) proteins play essential roles in regulating plant growth and development, as well as enhancing resistance to abiotic and biotic stresses. However, the whole-genome identification and expression profiling analysis of DIR gene family in millet (Setaria italica (Si)) have not been systematically understood. In this study, we conducted genome-wide identification and expression analysis of the S. italica DIR gene family, including gene structures, conserved domains, evolutionary relationship, chromosomal locations, cis-elements, duplication events, gene collinearity and expression patterns. A total of 38 SiDIR members distributed on nine chromosomes were screened and identified. SiDIR family members in the same group showed higher sequence similarity. The phylogenetic tree divided the SiDIR proteins into six subfamilies: DIR-a, DIR-b/d, DIR-c, DIR-e, DIR-f, and DIR-g. According to the tertiary structure prediction, DIR proteins (like SiDIR7/8/9) themselves may form a trimer to exert function. The result of the syntenic analysis showed that tandem duplication may play the major driving force during the evolution of SiDIRs. RNA-seq data displayed higher expression of 16 SiDIR genes in root tissues, and this implied their potential functions during root development. The results of quantitative real-time PCR (RT-qPCR) assays revealed that SiDIR genes could respond to the stress of CaCl2, CdCl, NaCl, and PEG6000. This research shed light on the functions of SiDIRs in responding to abiotic stress and demonstrated their modulational potential during root development. In addition, the membrane localization of SiDIR7/19/22 was confirmed to be consistent with the forecast. The results above will provide a foundation for further and deeper investigation of DIRs.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italica)
    Lai, Dili
    Fan, Yue
    Xue, Guoxing
    He, Ailing
    Yang, Hao
    He, Chunlin
    Li, Yijing
    Ruan, Jingjun
    Yan, Jun
    Cheng, Jianping
    BMC GENOMICS, 2022, 23 (01)
  • [42] Genome-Wide Identification and Characterization of the CCT Gene Family in Foxtail Millet (Setaria italica) Response to Diurnal Rhythm and Abiotic Stress
    Li, Yuntong
    Yu, Shumin
    Zhang, Qiyuan
    Wang, Ziwei
    Liu, Meiling
    Zhang, Ao
    Dong, Xiaomei
    Fan, Jinjuan
    Zhu, Yanshu
    Ruan, Yanye
    Li, Cong
    GENES, 2022, 13 (10)
  • [43] Genome-wide identification and expression analysis of the expansin gene family in tomato
    Yongen Lu
    Lifeng Liu
    Xin Wang
    Zhihui Han
    Bo Ouyang
    Junhong Zhang
    Hanxia Li
    Molecular Genetics and Genomics, 2016, 291 : 597 - 608
  • [44] GENOME-WIDE IDENTIFICATION AND EXPRESSION ANALYSIS OF AAO GENE FAMILY IN MAIZE
    Wu, De-Gong
    Wang, Yong
    Huang, Shou-Cheng
    Zhan, Qiu-Wen
    Yu, Hai-Bing
    Hunag, Bao-Hong
    Cheng, Xin-Xin
    Li, Wen-Yang
    Du, Jun-Li
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (01) : 181 - 190
  • [45] Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat
    Yanlin Yang
    Tian Xu
    Honggang Wang
    Deshun Feng
    Molecular Biology Reports, 2021, 48 : 1269 - 1279
  • [46] Genome-Wide Identification and Expression Analysis of FD Gene Family in Bamboos
    Hou, Lihan
    Zhang, Huiting
    Fan, Yakun
    Zhang, Yaling
    Zhang, Wengen
    Yang, Guangyao
    Guo, Chunce
    Wang, Meixia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)
  • [47] Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava
    Wei, Yunxie
    Shi, Haitao
    Xia, Zhiqiang
    Tie, Weiwei
    Ding, Zehong
    Yan, Yan
    Wang, Wenquan
    Hu, Wei
    Li, Kaimian
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [48] Genome-Wide Identification and Expression Analysis of SNAP Gene Family in Wheat
    Zhang, Xiaohan
    Yu, Yanan
    Sun, Yumeng
    Bai, Yan
    Shu, Yongjun
    Guo, Changhong
    GENES, 2024, 15 (10)
  • [49] Genome-wide identification and expression analysis of the PsKIN gene family in pea
    Yuan, Hao
    Liu, Baoxia
    Zhang, Guwen
    Feng, Zhijuan
    Wang, Bin
    Bu, Yuanpeng
    Xu, Yu
    Gong, Yaming
    Sun, Zhihong
    Liu, Na
    FRONTIERS IN GENETICS, 2024, 15
  • [50] Genome-Wide Identification and Expression Analysis of the VILLIN Gene Family in Soybean
    Zhou, Yueqiong
    He, Liangliang
    Zhou, Shaoli
    Wu, Qing
    Zhou, Xuan
    Mao, Yawen
    Zhao, Baolin
    Wang, Dongfa
    Zhao, Weiyue
    Wang, Ruoruo
    Hu, Huabin
    Chen, Jianghua
    PLANTS-BASEL, 2023, 12 (11):