A Brezis-Oswald approach for mixed local and nonlocal operators

被引:37
作者
Biagi, Stefano [1 ]
Mugnai, Dimitri [2 ]
Vecchi, Eugenio [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Tuscia, Dipartimento Ecol & Biol DEB, Largo dellUniv, I-01100 Viterbo, Italy
[3] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, Bologna, Italy
关键词
Operators of mixed order; p-sublinear Dirichlet problems; existence and uniqueness of solutions; strong maximum principle; L-infinity-estimate; P-LAPLACIANS; EIGENVALUE; EXISTENCE;
D O I
10.1142/S0219199722500572
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide necessary and sufficient conditions for the existence of a unique positive weak solution for some sublinear Dirichlet problems driven by the sum of a quasilinear local and a nonlocal operator, i.e. L-p,L-s = -Delta(p) + (-Delta)(p)(s). Our main result is resemblant to the celebrated work by Brezis-Oswald [Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986) 55-64]. In addition, we prove a regularity result of independent interest.
引用
收藏
页数:28
相关论文
共 30 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[3]   Lipschitz regularity of solutions for mixed integro-differential equations [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Ciomaga, Adina ;
Imbert, Cyril .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6012-6060
[4]  
Biagi S., J ANAL MATH
[5]   Necessary condition in a Brezis-Oswald-type problem for mixed local and nonlocal operators [J].
Biagi, Stefano ;
Mugnai, Dimitri ;
Vecchi, Eugenio .
APPLIED MATHEMATICS LETTERS, 2022, 132
[6]   Mixed local and nonlocal elliptic operators: regularity and maximum principles [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) :585-629
[7]   Semilinear elliptic equations involving mixed local and nonlocal operators [J].
Biagi, Stefano ;
Vecchi, Eugenio ;
Dipierro, Serena ;
Valdinoci, Enrico .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) :1611-1641
[8]   Optimal solvability for a nonlocal problem at critical growth [J].
Brasco, Lorenzo ;
Squassina, Marco .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) :2242-2269
[9]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[10]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64