Artificial intelligence in cardiovascular prevention: new ways will open new doors

被引:0
作者
Ciccarelli, Michele [1 ,9 ]
Giallauria, Francesco [2 ]
Carrizzo, Albino [1 ,3 ]
Visco, Valeria [1 ]
Silverio, Angelo [1 ]
Cesaro, Arturo [4 ]
Calabro, Paolo [4 ]
De Luca, Nicola [5 ]
Mancusi, Costantino [5 ]
Masarone, Daniele [6 ]
Pacileo, Giuseppe [6 ]
Tourkmani, Nidal [7 ,8 ]
Vigorito, Carlo [2 ]
Vecchione, Carmine [1 ,3 ]
机构
[1] Univ Salerno, Dept Med Surg & Dent, Baronissi, Italy
[2] Univ Naples Federico II, Dept Translat Med Sci, Naples, Italy
[3] IRCCS Neuromed, Vasc Physiopathol Unit, Pozzilli, Italy
[4] Univ Campania Luigi Vanvitelli, Dept Translat Med Sci, Naples, Italy
[5] Univ Naples Federico II, Dept Adv Biomed Sci, Naples, Italy
[6] AORN Colli Monaldi Hosp Naples, Dept Cardiol, Heart Failure Unit, Naples, Italy
[7] Mons Giosue Calaciura Clin, Cardiol & Cardiac Rehabil Unit, Catania, Italy
[8] ABL, Guangzhou, Peoples R China
[9] Univ Salerno, Dept Med Surg & Dent, Via Salvador Allende, I-84081 Salerno, Italy
关键词
artificial intelligence; atrial fibrillation; cardiovascular prevention; coronary artery disease; heart failure; hypertension; machine learning; personalized medicine; risk stratification; CORONARY-ARTERY-DISEASE; INCIDENT ATRIAL-FIBRILLATION; FAILURE RISK SCORE; HEART-FAILURE; PREDICTION MODEL; HEALTH-CARE; VALIDATION; CARDIOLOGY; EVENTS; PERFORMANCE;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prevention and effective treatment of cardiovascular disease are progressive issues that grow in tandem with the average age of the world population. Over recent decades, the potential role of artificial intelligence in cardiovascular medicine has been increasingly recognized because of the incredible amount of real-world data (RWD) regarding patient health status and healthcare delivery that can be collated from a variety of sources wherein patient information is routinely collected, including patient registries, clinical case reports, reimbursement claims and billing reports, medical devices, and electronic health records. Like any other (health) data, RWD can be analysed in accordance with high-quality research methods, and its analysis can deliver valuable patient-centric insights complementing the information obtained from conventional clinical trials. Artificial intelligence application on RWD has the potential to detect a patient's health trajectory leading to personalized medicine and tailored treatment. This article reviews the benefits of artificial intelligence in cardiovascular prevention and management, focusing on diagnostic and therapeutic improvements without neglecting the limitations of this new scientific approach.
引用
收藏
页码:E106 / E115
页数:10
相关论文
共 142 条
  • [1] Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants
    Alaa, Ahmed M.
    Bolton, Thomas
    Di Angelantonio, Emanuele
    Rudd, James H. F.
    van der Schaar, Mihaela
    [J]. PLOS ONE, 2019, 14 (05):
  • [2] Aljaaf AJ, 2015, 2015 THIRD INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), P101, DOI 10.1109/TAEECE.2015.7113608
  • [3] Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium
    Alonso, Alvaro
    Krijthe, Bouwe P.
    Aspelund, Thor
    Stepas, Katherine A.
    Pencina, Michael J.
    Moser, Carlee B.
    Sinner, Moritz F.
    Sotoodehnia, Nona
    Fontes, Joao D.
    Janssens, A. Cecile J. W.
    Kronmal, Richard A.
    Magnani, Jared W.
    Witteman, Jacqueline C.
    Chamberlain, Alanna M.
    Lubitz, Steven A.
    Schnabel, Renate B.
    Agarwal, Sunil K.
    McManus, David D.
    Ellinor, Patrick T.
    Larson, Martin G.
    Burke, Gregory L.
    Launer, Lenore J.
    Hofman, Albert
    Levy, Daniel
    Gottdiener, John S.
    Kaeaeb, Stefan
    Couper, David
    Harris, Tamara B.
    Soliman, Elsayed Z.
    Stricker, Bruno H. C.
    Gudnason, Vilmundur
    Heckbert, Susan R.
    Benjamin, Emelia J.
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02): : e000102
  • [4] Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis
    Ambale-Venkatesh, Bharath
    Yang, Xiaoying
    Wu, Colin O.
    Liu, Kiang
    Hundley, W. Gregory
    McClelland, Robyn
    Gomes, Antoinette S.
    Folsom, Aaron R.
    Shea, Steven
    Guallar, Eliseo
    Bluemke, David A.
    Lima, Joao A. C.
    [J]. CIRCULATION RESEARCH, 2017, 121 (09) : 1092 - +
  • [5] Design and Performance of a Multisensor Heart Failure Monitoring Algorithm: Results From the Multisensor Monitoring in Congestive Heart Failure (MUSIC) Study
    Anand, Inder S.
    Tang, W. H. Wilson
    Greenberg, Barry H.
    Chakravarthy, Niranjan
    Libbus, Imad
    Katra, Rodolphe P.
    [J]. JOURNAL OF CARDIAC FAILURE, 2012, 18 (04) : 289 - 295
  • [6] Arnett DK, 2019, CIRCULATION, V140, pE596, DOI [10.1161/CIR.0000000000000677, 10.1161/CIR.0000000000000678, 10.1016/j.jacc.2019.03.009, 10.1016/j.jacc.2019.03.010]
  • [7] Improved Accuracy of Myocardial Perfusion SPECT for the Detection of Coronary Artery Disease Using a Support Vector Machine Algorithm
    Arsanjani, Reza
    Xu, Yuan
    Dey, Damini
    Fish, Matthews
    Dorbala, Sharmila
    Hayes, Sean
    Berman, Daniel
    Germano, Guido
    Slomka, Piotr
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (04) : 549 - 555
  • [8] Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians
    Asan, Onur
    Bayrak, Alparslan Emrah
    Choudhury, Avishek
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (06)
  • [9] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [10] Feasibility of atrial fibrillation detection from a novel wearable armband device
    Bashar, Syed Khairul
    Hossain, Md-Billal
    Lazaro, Jesus
    Ding, Eric Y.
    Noh, Yeonsik
    Cho, Chae Ho
    McManus, David D.
    Fitzgibbons, Timothy P.
    Chon, Ki H.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (03): : 179 - 191