Holographic confining-deconfining gauge theories and entanglement measures with a magnetic field

被引:13
作者
Jain, Parul [1 ]
Jena, Siddhi Swarupa [2 ]
Mahapatra, Subhash [2 ]
机构
[1] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[2] Natl Inst Technol Rourkela, Dept Phys & Astron, Rourkela 769008, India
基金
新加坡国家研究基金会;
关键词
PHASE-TRANSITION; ENTROPY; SEPARABILITY; CONFINEMENT; NEGATIVITY; COLLISIONS; ENERGY; EVENT;
D O I
10.1103/PhysRevD.107.086016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study various holographic pure and mixed-state entanglement measures in the confined/deconfined phases of a bottom-up AdS/QCD model in the presence of a background magnetic field. We analyze the entanglement entropy, entanglement wedge cross section, mutual information, and entanglement negativity and investigate how a background magnetic field leaves its imprints on the entanglement structure of these measures. Due to the anisotropy introduced by the magnetic field, we find that the behavior of these measures depends nontrivially on the relative orientation of the strip with respect to the field. In the confining phase, the entanglement entropy and negativity undergo a phase transition at the same critical strip length, the magnitude of which increases/decreases for parallel/perpendicular orientation of the magnetic field. The entanglement wedge cross section similarly displays discontinuous behavior each time a phase transition between different entangling surfaces occurs, while further exhibiting anisotropic features with a magnetic field. We further find that the magnetic field also introduces substantial changes in the entanglement measures of the deconfined phase; however, these changes remain qualitatively similar for all orientations of the magnetic field. We further study the inequality involving the entanglement wedge and mutual information and find that the former always exceeds half of the latter everywhere in the parameter space of the confined/deconfined phases.
引用
收藏
页数:31
相关论文
共 188 条
[31]   Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model [J].
Bohra, Hardik ;
Dudal, David ;
Hajiloud, Ali ;
Mahapatra, Subhash .
PHYSICS LETTERS B, 2020, 801
[32]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[33]   Magnetic field effects on the static quark potential at zero and finite temperature [J].
Bonati, Claudio ;
D'Elia, Massimo ;
Mariti, Marco ;
Mesiti, Michele ;
Negro, Francesco ;
Rucci, Andrea ;
Sanfilippo, Francesco .
PHYSICAL REVIEW D, 2016, 94 (09)
[34]   Anisotropy of the quark-antiquark potential in a magnetic field [J].
Bonati, Claudio ;
D'Elia, Massimo ;
Mariti, Marco ;
Mesiti, Michele ;
Negro, Francesco ;
Sanfilippo, Francesco .
PHYSICAL REVIEW D, 2014, 89 (11)
[35]   Configuration entropy description of charmonium dissociation under the influence of magnetic fields [J].
Braga, Nelson R. F. ;
da Mata, Rodrigo .
PHYSICS LETTERS B, 2020, 811
[36]   POSITIVE ENERGY IN ANTI-DE SITTER BACKGROUNDS AND GAUGED EXTENDED SUPERGRAVITY [J].
BREITENLOHNER, P ;
FREEDMAN, DZ .
PHYSICS LETTERS B, 1982, 115 (03) :197-201
[37]   Inverse magnetic catalysis and the Polyakov loop [J].
Bruckmann, Falk ;
Endrodi, Gergely ;
Kovacs, Tamas G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04)
[38]   Numerical study of entanglement entropy in SU(2) lattice gauge theory [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
NUCLEAR PHYSICS B, 2008, 802 (03) :458-474
[39]   Entanglement entropy in gauge theories and the holographic principle for electric strings [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
PHYSICS LETTERS B, 2008, 670 (02) :141-145
[40]   Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions [J].
Bzdak, Adam ;
Skokov, Vladimir .
PHYSICS LETTERS B, 2012, 710 (01) :171-174