Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials

被引:8
作者
Byun, Sung-Soo [1 ]
Kang, Nam-Gyu [2 ]
Seo, Seong-Mi [3 ]
机构
[1] Korea Inst Adv Study, Ctr Math Challenges, 85 Hoegiro, Seoul 02455, South Korea
[2] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
[3] Chungnam Natl Univ, Dept Math, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
ONE-COMPONENT PLASMA; FINITE-SIZE; ENSEMBLES; FLUCTUATIONS; POLYNOMIALS; DENSITY;
D O I
10.1007/s00220-023-04673-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random normal matrix and planar symplectic ensembles, which can be interpreted as two-dimensional Coulomb gases having determinantal and Pfaffian structures, respectively. For a class of radially symmetric potentials with soft edges, we derive the asymptotic expansions of the log-partition functions up to and including the O(1)-terms as the number N of particles increases. Notably, our findings stress that the formulas of the O(log N)- and O(1)-terms in these expansions depend on the connectivity of the droplet. For random normal matrix ensembles, our formulas agree with the predictions proposed by Zabrodin and Wiegmann up to an additive constant depending on N but not on the background potential. For planar symplectic ensembles, the expansions contain a new kind of ingredient in the O(N)-terms, the logarithmic potential evaluated at the origin in addition to the entropy of the ensembles.
引用
收藏
页码:1627 / 1663
页数:37
相关论文
共 62 条
[11]   Equilibrium Measures for a Class of Potentials with Discrete Rotational Symmetries [J].
Balogh, F. ;
Merzi, D. .
CONSTRUCTIVE APPROXIMATION, 2015, 42 (03) :399-424
[12]  
Bauerschmidt R, 2019, ADV THEOR MATH PHYS, V23, P841
[13]   RANDOM RIGHT EIGENVALUES OF GAUSSIAN QUATERNIONIC MATRICES [J].
Benaych-Georges, Florent ;
Chapon, Francois .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (02)
[14]  
Byun S.-S., 2022, PREPRINT
[15]  
Byun S.-S., 2023, PREPRINT
[16]   On the almost-circular symplectic induced Ginibre ensemble [J].
Byun, Sung-Soo ;
Charlier, Christophe .
STUDIES IN APPLIED MATHEMATICS, 2023, 150 (01) :184-217
[17]   Exact and Asymptotic Features of the Edge Density Profile for the One Component Plasma in Two Dimensions [J].
Can, T. ;
Forrester, P. J. ;
Tellez, G. ;
Wiegmann, P. .
JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) :1147-1180
[18]   FIRST-ORDER GLOBAL ASYMPTOTICS FOR CONFINED PARTICLES WITH SINGULAR PAIR REPULSION [J].
Chafai, Djalil ;
Gozlan, Nathael ;
Zitt, Pierre-Andre .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (06) :2371-2413
[19]   Entanglement Entropy and Berezin-Toeplitz Operators [J].
Charles, Laurent ;
Estienne, Benoit .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (01) :521-554
[20]  
Charlier C., 2022, PREPRINT