Partition Functions of Determinantal and Pfaffian Coulomb Gases with Radially Symmetric Potentials

被引:8
作者
Byun, Sung-Soo [1 ]
Kang, Nam-Gyu [2 ]
Seo, Seong-Mi [3 ]
机构
[1] Korea Inst Adv Study, Ctr Math Challenges, 85 Hoegiro, Seoul 02455, South Korea
[2] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
[3] Chungnam Natl Univ, Dept Math, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
ONE-COMPONENT PLASMA; FINITE-SIZE; ENSEMBLES; FLUCTUATIONS; POLYNOMIALS; DENSITY;
D O I
10.1007/s00220-023-04673-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random normal matrix and planar symplectic ensembles, which can be interpreted as two-dimensional Coulomb gases having determinantal and Pfaffian structures, respectively. For a class of radially symmetric potentials with soft edges, we derive the asymptotic expansions of the log-partition functions up to and including the O(1)-terms as the number N of particles increases. Notably, our findings stress that the formulas of the O(log N)- and O(1)-terms in these expansions depend on the connectivity of the droplet. For random normal matrix ensembles, our formulas agree with the predictions proposed by Zabrodin and Wiegmann up to an additive constant depending on N but not on the background potential. For planar symplectic ensembles, the expansions contain a new kind of ingredient in the O(N)-terms, the logarithmic potential evaluated at the origin in addition to the entropy of the ensembles.
引用
收藏
页码:1627 / 1663
页数:37
相关论文
共 62 条
[1]  
Adhikari K., 2016, INT MATH RES NOTICES, V12, P694
[2]   Hole probabilities for β-ensembles and determinantal point processes in the complex plane [J].
Adhikari, Kartick .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[3]   The complex Laguerre symplectic ensemble of non-Hermitian matrices [J].
Akemann, G .
NUCLEAR PHYSICS B, 2005, 730 (03) :253-299
[4]   Gap probabilities in non-Hermitian random matrix theory [J].
Akemann, G. ;
Phillips, M. J. ;
Shifrin, L. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)
[5]   Universality of the Number Variance in Rotational Invariant Two-Dimensional Coulomb Gases [J].
Akemann, Gernot ;
Byun, Sung-Soo ;
Ebke, Markus .
JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (01)
[6]   Scaling Limits of Planar Symplectic Ensembles [J].
Akemann, Gernot ;
Byun, Sung-Soo ;
Kang, Nam-Gyu .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
[7]   Skew-Orthogonal Polynomials in the Complex Plane and Their Bergman-Like Kernels [J].
Akemann, Gernot ;
Ebke, Markus ;
Parra, Ivan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (01) :621-659
[8]   A Non-Hermitian Generalisation of the Marchenko-Pastur Distribution: From the Circular Law to Multi-criticality [J].
Akemann, Gernot ;
Byun, Sung-Soo ;
Kang, Nam-Gyu .
ANNALES HENRI POINCARE, 2021, 22 (04) :1035-1068
[9]  
Ameur Y., 2022, PREPRINT
[10]   The Random Normal Matrix Model: Insertion of a Point Charge [J].
Ameur, Yacin ;
Kang, Nam-Gyu ;
Seo, Seong-Mi .
POTENTIAL ANALYSIS, 2023, 58 (02) :331-372