Iwasawa theory of automorphic representations of GL2n at non-ordinary primes

被引:0
作者
Lei, Antonio [1 ]
Ray, Jishnu [2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, 150 Louis Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
[2] TCG Ctr Res & Educ Sci & Technol, 1st Floor,Tower 1,Bengal Eco Intelligent Pk, Kolkata 700091, India
基金
加拿大自然科学与工程研究理事会;
关键词
Automorphic representations; Non-ordinary primes; p-adic L-functions; Iwasawa main conjecture; RANKIN-EISENSTEIN CLASSES; ADIC L-FUNCTIONS; ELLIPTIC-CURVES; ZETA-FUNCTIONS; EULER SYSTEMS; CONSTRUCTION; VALUES; FORMS;
D O I
10.1007/s40687-022-00360-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Pi be a cuspidal automorphic representation of GL(2n)(A(Q)), and let p be an odd prime at which Pi is unramified. In a recent work, Barrera, Dimitrov and Williams constructed possibly unbounded p-adic L-functions interpolating complex L-values of Pi in the non-ordinary case. Under certain assumptions, we construct two bounded p-adic L-functions for Pi, thus extending an earlier work of Rockwood by relaxing the Pollack condition. Using Langlands local-global compatibility, we define signed Selmer groups over the p-adic cyclotomic extension of Q attached to the p-adic Galois representation of Pi and formulate Iwasawa main conjectures in the spirit of Kobayashi's plus and minus main conjectures for p-supersingular elliptic curves.
引用
收藏
页数:25
相关论文
共 51 条
[1]  
Amice Y., 1975, ASTERISQUE, P24
[2]   Generic transfer for general spin groups [J].
Asgari, M ;
Shahidi, F .
DUKE MATHEMATICAL JOURNAL, 2006, 132 (01) :137-190
[3]   Image of functoriality for general spin groups [J].
Asgari, Mahdi ;
Shahidi, Freydoon .
MANUSCRIPTA MATHEMATICA, 2014, 144 (3-4) :609-638
[4]   P-ADIC L-FUNCTIONS FOR GL(2N) [J].
ASH, A ;
GINZBURG, D .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :27-73
[5]  
Barnet-Lamb T, 2014, ANN SCI ECOLE NORM S, V47, P165
[6]  
Benois D, 2008, COMMENT MATH HELV, V83, P603
[7]   Construction of some families of 2-dimensional crystalline representations [J].
Berger, L ;
Li, HF ;
Zhu, HJ .
MATHEMATISCHE ANNALEN, 2004, 329 (02) :365-377
[8]   Limits of crystalline representations [J].
Berger, L .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1473-1498
[9]  
Berger L., 2003, DOC MATH, V2003, P99
[10]  
Bloch S., 1990, Progr. Math., V86, P333