Toward Reagent-Free Discrimination of Alzheimer's Disease Using Blood Plasma Spectral Digital Biomarkers and Machine Learning

被引:3
作者
Li, Zhigang [1 ,2 ]
Wu, Hao [3 ]
Ji, Yong [3 ,4 ,5 ]
Shi, Zhihong [3 ,4 ]
Liu, Shuai [3 ,4 ]
Bao, Xinran [3 ]
Shan, Peng [1 ,2 ]
Hu, Dean [1 ,2 ]
Li, Meimei [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China
[2] Hebei Key Lab Micro Nano Precis Optic Sensing &, Qinhuangdao, Hebei, Peoples R China
[3] Tianjin Huanhu Hosp, Dept Neurol, Tianjin 300350, Peoples R China
[4] Tianjin Dementia Inst, Tianjin Key Lab Cerebral Vasc & Neurodegenerat D, Tianjin 300350, Peoples R China
[5] First Hosp Qinhuangdao, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's disease; blood plasma; discrimination; machine learning; reagent-free; spectral digital biomarkers; INFRARED-SPECTROSCOPY; AMYLOID-BETA; PROTEIN; DIAGNOSIS; FTIR; DEMENTIA; PEPTIDE; SHEET; TOOL;
D O I
10.3233/JAD-230248
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. The detection of early-stage AD is particularly desirable because it would allow early intervention. However, a minimally invasive, low-cost, and accurate discrimination or diagnostic method for AD is especially difficult in the earliest stage of AD. Objective: The aim of this research is to discover blood plasma spectral digital biomarkers of AD, develop a novel intelligent method for the discrimination ofADand accelerate the translation of Fourier transform infrared (FTIR) spectral-based disease discrimination methods from the laboratory to clinical practice. Methods: Since vibration spectroscopy can provide the structure and chemical composition information of biological samples at the molecular level, we investigated the potential of FTIR spectral biomarkers of blood plasma to differentiate between AD patients and healthy controls. Combined with machine learning technology, we designed a hierarchical discrimination system that provides reagent-free and accurate AD discrimination based on blood plasma spectral digital biomarkers of AD. Results: Accurate segregation between AD patients and healthy controls was achieved with 89.3% sensitivity and 85.7% specificity for early-stage AD patients, 92.8% sensitivity and 87.5% specificity for middle-stage AD patients, and 100% sensitivity and 100% specificity for late-stage AD patients. Conclusions: Our results show that blood plasma spectral digital biomarkers hold great promise as discrimination markers of AD, indicating the potential for the development of an inexpensive, reagent-free, and less laborious clinical test. As a result, our research outcome will accelerate the clinical application of spectral digital biomarkers and machine learning.
引用
收藏
页码:1175 / 1188
页数:14
相关论文
共 42 条
[1]  
Bhatia Vandana, 2021, J Neurol Sci, V421, P117253, DOI [10.1016/j.jns.2020.117253, 10.1016/j.jns.2020.117253]
[2]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[3]   Structural, morphological, and functional diversity of amyloid oligomers [J].
Breydo, Leonid ;
Uversky, Vladimir N. .
FEBS LETTERS, 2015, 589 (19) :2640-2648
[4]   Discrimination Analysis of Blood Plasma Associated with Alzheimer's Disease Using Vibrational Spectroscopy [J].
Carmona, Pedro ;
Molina, Marina ;
Calero, Miguel ;
Bermejo-Pareja, Felix ;
Martinez-Martin, Pablo ;
Toledanog, Adolfo .
JOURNAL OF ALZHEIMERS DISEASE, 2013, 34 (04) :911-920
[5]   Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide [J].
Cerf, Emilie ;
Sarroukh, Rabia ;
Tamamizu-Kato, Shiori ;
Breydo, Leonid ;
Derclaye, Sylvie ;
Dufrene, Yves F. ;
Narayanaswami, Vasanthy ;
Goormaghtigh, Erik ;
Ruysschaert, Jean-Marie ;
Raussens, Vincent .
BIOCHEMICAL JOURNAL, 2009, 421 :415-423
[6]  
Correia M, 2016, J Alzheimers Neurodegener Dis, V2
[7]   Pitfalls of assessing extracted hierarchies for multi-class classification [J].
del Moral, Pablo ;
Nowaczyk, Slawomir ;
Sant'Anna, Anita ;
Pashami, Sepideh .
PATTERN RECOGNITION, 2023, 136
[8]   Applications of FT-IR spectrometry to plasma contents analysis and monitoring [J].
Déléris, G ;
Petibois, C .
VIBRATIONAL SPECTROSCOPY, 2003, 32 (01) :129-136
[9]   Longitudinal Change in CSF Biomarkers in Autosomal-Dominant Alzheimer's Disease [J].
Fagan, Anne M. ;
Xiong, Chengjie ;
Jasielec, Mateusz S. ;
Bateman, Randall J. ;
Goate, Alison M. ;
Benzinger, Tammie L. S. ;
Ghetti, Bernardino ;
Martins, Ralph N. ;
Masters, Colin L. ;
Mayeux, Richard ;
Ringman, John M. ;
Rossor, Martin N. ;
Salloway, Stephen ;
Schofield, Peter R. ;
Sperling, Reisa A. ;
Marcus, Daniel ;
Cairns, Nigel J. ;
Buckles, Virginia D. ;
Ladenson, Jack H. ;
Morris, John C. ;
Holtzman, David M. .
SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (226)
[10]   Evaluation of the information content in infrared spectra for protein secondary structure determination [J].
Goormaghtigh, E ;
Ruysschaert, JM ;
Raussens, V .
BIOPHYSICAL JOURNAL, 2006, 90 (08) :2946-2957