Dynamical behaviors of an epidemic model for malware propagation in wireless sensor networks

被引:7
作者
Zhou, Ying [1 ]
Wang, Yan [2 ]
Zhou, Kai [3 ]
Shen, Shou-Feng [3 ]
Ma, Wen-Xiu [4 ,5 ,6 ,7 ]
机构
[1] Zhejiang Shuren Univ, Coll Informat Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Gongshang Univ Hangzhou Coll Commerce, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ Technol, Dept Appl Math, Hangzhou, Peoples R China
[4] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
[5] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[6] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[7] North West Univ, Sch Math & Stat Sci, Mafikeng Campus, Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
SEIQR epidemic model; malware propagation; basic reproductive number; optimal control; SUIQR; STABILITY;
D O I
10.3389/fphy.2023.1198410
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To explore malware propagation mechanisms in networks and to develop optimal strategies for controlling the spread of malware, we propose a susceptible-unexposed-infected-isolation-removed epidemic model. First, we establish a non-linear dynamic equation of malware propagation. Then, the basic reproductive number is derived by using the next-generation method. Finally, we carry out numerical simulations to observe the malware spreading in WSNs to verify the obtained theoretical results. Furthermore, we investigate the communication range of the nodes to make the results more complete. The optimal range of the nodes is designed to control malware propagation.
引用
收藏
页数:9
相关论文
共 30 条
[1]  
Carnier RM., 2023, TECHRXIV TECHRXIV, DOI [10.36227/techrxiv.22047527, DOI 10.36227/TECHRXIV.22047527]
[2]   A computational propagation model for malware based on the SIR classic model [J].
del Rey, A. Martin ;
Vara, R. Casado ;
Gonzalez, S. Rodriguez .
NEUROCOMPUTING, 2022, 484 :161-171
[3]   The analysis of a fractional network-based epidemic model with saturated treatment function and fuzzy transmission [J].
Dong, N. P. ;
Long, H., V ;
Son, N. T. K. .
IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (01) :1-18
[4]  
Fedorov D., 2021, 2021 INT BALK C COMM, P1, DOI [10.1109/BalkanCom53780.2021.9593147, DOI 10.1109/BALKANCOM53780.2021.9593147]
[5]   Dynamical analysis and control strategies on malware propagation model [J].
Feng, Liping ;
Liao, Xiaofeng ;
Han, Qi ;
Li, Huaqing .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (16-17) :8225-8236
[6]   Connectivity analysis of 2D underwater optical wireless sensor networks using a geometric approach [J].
Habibiyan, Reza ;
Sabbagh, Abbasali Ghorban .
AD HOC NETWORKS, 2022, 134
[7]   Dynamical analysis of a malware propagation model considering the impacts of mobile devices and software diversification [J].
Hosseini, Soodeh ;
Azgomi, Mohammad Abdollahi .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
[8]   The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks [J].
Hosseini, Soodeh ;
Azgomi, Mohammad Abdollahi .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 :803-817
[9]   A model for malware propagation in scale-free networks based on rumor spreading process [J].
Hosseini, Soodeh ;
Azgomi, Mohammad Abdollahi .
COMPUTER NETWORKS, 2016, 108 :97-107
[10]   Optimal Control of Rumor Spreading Model on Homogeneous Social Network with Consideration of Influence Delay of Thinkers [J].
Jain, Ankur ;
Dhar, Joydip ;
Gupta, Vijay K. .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023, 31 (01) :113-134