Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions

被引:40
|
作者
Yang, Yang [1 ]
Zhang, Wenyao [2 ]
Tan, Xuehai [1 ]
Jiang, Keren [1 ]
Zhai, Shengli [1 ]
Li, Zhi [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[2] Nanjing Univ Sci & Technol, Key Lab Soft Chem & Funct Mat, Minist Educ, Nanjing 210094, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Electrocatalytic; Nitrogen reduction; Ammonia synthesis; Atomic-level; Single-atoms; METAL-ORGANIC FRAMEWORKS; N-2; REDUCTION; PROMISING ELECTROCATALYST; ELECTROCHEMICAL SYNTHESIS; HYDROGEN EVOLUTION; CATALYTIC-ACTIVITY; SINGLE/DUAL-ATOM; RATIONAL DESIGN; RECENT PROGRESS; DOPED GRAPHENE;
D O I
10.1016/j.ccr.2023.215196
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ammonia (NH3) is an integral part to modern agriculture and industry. As an economical and sustainable process to convert nitrogen to NH3 under ambient conditions, the electrocatalytic nitrogen reduction reaction (NRR) strategy has attracted considerable attention in recent years. The fabrication of atomic-level reactive sites provides an opportunity to develop novel atomic-scale catalysts with excellent electrocatalytic NRR performance. In particular, the design of atomic-level reactive sites can not only improve the activity, selectivity, and durability for electrocatalytic NRR, but also deepen the understanding of the reaction mechanism. In this review, the roles of reactive sites in electrocatalytic NRR and the electrocatalytic NRR mechanism are introduced first. Then the typical strategies to construct and characterize atomic-level reactive sites are summarized. Next, the recent progress in rational design and development of atomic-level reactive sites for electrocatalytic NRR is summarized and discussed, with a focus on single-atoms, dual-atoms, metal clusters, vacancies, and dopants. Additionally, the rigorous protocols for electrocatalytic NRR are listed. Finally, the challenges and perspectives of atomic-level reactive sites in electrocatalytic NRR are proposed to develop more credible high-efficiency NRR electrocatalysts.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Boosting electrocatalytic reduction of nitrogen to ammonia under ambient conditions by alloy engineering
    Jin, Yu
    Ding, Xin
    Zhang, Linlin
    Cong, Meiyu
    Xu, Fanfan
    Wei, Yu
    Hao, Shengjie
    Gao, Yan
    CHEMICAL COMMUNICATIONS, 2020, 56 (77) : 11477 - 11480
  • [2] Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions
    Qiu, Yuan
    Peng, Xianyun
    Lue, Fang
    Mi, Yuying
    Zhuo, Longchao
    Ren, Junqiang
    Liu, Xijun
    Luo, Jun
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (16) : 2770 - 2779
  • [3] Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions
    Jude John
    Dong-Kyu Lee
    Uk Sim
    Nano Convergence, 6
  • [4] Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions
    John, Jude
    Lee, Dong-Kyu
    Sim, Uk
    NANO CONVERGENCE, 2019, 6 (1)
  • [5] A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions
    Cui, Xiaoyang
    Tang, Cheng
    Zhang, Qiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (22)
  • [6] Nitrogen Reduction to Ammonia on Atomic-Scale Active Sites under Mild Conditions
    Yan, Xiao
    Liu, Daolan
    Cao, Huanhuan
    Hou, Feng
    Liang, Ji
    Dou, Shi Xue
    SMALL METHODS, 2019, 3 (09):
  • [7] Electrocatalytic reduction of nitrogen to ammonia under ambient conditions using a nanorod-structured MoN catalyst
    Liu, Guoqiang
    Zhao, Cuijiao
    Ding, Shimin
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (48) : 21070 - 21075
  • [8] Electrocatalysts with atomic-level site for nitrate reduction to ammonia
    Shuai Yin
    Rong Cao
    Yifan Han
    Jiachangli Shang
    Jing Zhang
    Wei Jiang
    Guigao Liu
    Journal of Energy Chemistry, 2024, 96 (09) : 642 - 668
  • [9] Electrocatalysts with atomic-level site for nitrate reduction to ammonia
    Yin, Shuai
    Cao, Rong
    Han, Yifan
    Shang, Jiachangli
    Zhang, Jing
    Jiang, Wei
    Liu, Guigao
    JOURNAL OF ENERGY CHEMISTRY, 2024, 96 : 642 - 668
  • [10] Electrochemical Nitrogen Reduction to Ammonia Under Ambient Conditions: Stakes and Challenges
    Biswas, Suchi Smita
    Chakraborty, Soumita
    Saha, Arunava
    Eswaramoorthy, Muthusamy
    CHEMICAL RECORD, 2022, 22 (11):