Radiomics-based intracranial thrombus features on preoperative noncontrast CT predicts successful recanalization of mechanical thrombectomy in acute ischemic stroke

被引:10
作者
Xiong, Xing [1 ]
Wang, Jia [2 ]
Ke, Jun [1 ]
Hong, Rong [1 ]
Jiang, Shu [1 ]
Ye, Jing [2 ]
Hu, Chunhong [1 ]
机构
[1] Soochow Univ, Dept Radiol, Affiliated Hosp 1, Suzhou, Peoples R China
[2] Northern Jiangsu Peoples Hosp, Dept Radiol, Yangzhou, Jiangsu, Peoples R China
关键词
Ischemic stroke; thrombus; computed tomography; radiomics; recanalization; STENT-RETRIEVER; REVASCULARIZATION; OCCLUSION;
D O I
10.21037/qims-22-599
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: To evaluate the predictive value of radiomics features extracted from the thrombus on preoperative computed tomography images to identify successful recanalization after stent retrieve (SR) treatment in patients with acute ischemic stroke (AIS). Methods: Two hundred fifty-six patients newly diagnosed AIS between March 2017 and September 2020 from two institutes, including the first affiliated hospital of Soochow university (institute I) and Northern Jiangsu People's hospital (institute II), were enrolled continuously and retrospectively. Patients with unsatisfactory image quality were excluded. The remaining patients of institute I were randomly divided into the training and internal validation cohorts at a ratio of 7 to 3, and patients of institute II were collected as the external validation cohort. After extraction and selection of the optimal radiomics features from training cohort, six machine learning (ML) classifiers including naive Bayes (NB), random forest (RF), logistic regression (LR), linear support vector machine (L.SVM), radial SVM (R.SVM), and an artificial neural network (ANN) were developed to predict successful recanalization with SR treatment and compared. A combined model based on the optimal ML classifier was constructed using the optimal radiomics model and clinical-radiological risk variables. Finally, the performance of the model was selected based on the Matthews correlation coefficient (MCC) and the area under the receiver operating (AUC) and independently evaluated on the internal validation and external validation cohorts. Results: We automatically extracted 1,130 radiomics features from the voxel of interest (VOI) using PyRadiomics. The eight most relevant radiomics features were identified using Intraclass coefficient, single-factor logistic regression analysis, and least absolute shrinkage and selection operator algorithm in the training cohort. Among the six ML classifiers, the ANN classifier using thrombus radiomics features achieved the best prediction of early recanalization under SR with MCCs of 0.913, 0.693 and 0.505 in training, internal and external validation cohorts, respectively. Moreover, receiver operating characteristic curves showed that the combined model [AUC =0.860, 95% confidence interval (CI): 0.731-0.936; AUC =0.849, 95% CI: 0.759-0.831] was not significantly better than radiomics model based on the ANN classifier alone ( AUC =0.873, 95% CI: 0.803-0.891; AUC =0.805, 95% CI: 0.864-0.971) (P>0.05, Delong test) in internal and external validation cohorts. Conclusions: A radiomics model based on the ANN classifier has the ability to predict successful recanalization after SR in patients with AIS, thus allowing a potentially better selection of mechanical thrombectomy treatment.
引用
收藏
页码:682 / +
页数:14
相关论文
共 31 条
[1]   Impact of admission glucose and diabetes on recanalization and outcome after intra-arterial thrombolysis for ischaemic stroke [J].
Arnold, Marcel ;
Mattle, Selina ;
Galimanis, Aekaterini ;
Kappeler, Liliane ;
Fischer, Urs ;
Jung, Simon ;
De Marchis, Gian Marco ;
Gralla, Jan ;
Mono, Marie-Luise ;
Brekenfeld, Caspar ;
Meier, Niklaus ;
Nedeltchev, Krassen ;
Schroth, Gerhard ;
Mattle, Heinrich P. .
INTERNATIONAL JOURNAL OF STROKE, 2014, 9 (08) :985-991
[2]   Predictive value of thrombus volume for recanalization in stent retriever thrombectomy [J].
Baek, Jang-Hyun ;
Yoo, Joonsang ;
Song, Dongbeom ;
Kim, Young Dae ;
Nam, Hyo Suk ;
Kim, Byung Moon ;
Kim, Dong Joon ;
Lee, Hye Sun ;
Heo, Ji Hoe .
SCIENTIFIC REPORTS, 2017, 7
[3]   Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis [J].
Bagher-Ebadian, Hassan ;
Janic, Branislava ;
Liu, Chang ;
Pantelic, Milan ;
Hearshen, David ;
Elshaikh, Mohamed ;
Movsas, Benjamin ;
Chatty, Indrin J. ;
Wen, Ning .
FRONTIERS IN ONCOLOGY, 2019, 9
[4]   A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke [J].
Berkhemer, O. A. ;
Fransen, P. S. S. ;
Beumer, D. ;
van den Berg, L. A. ;
Lingsma, H. F. ;
Yoo, A. J. ;
Schonewille, W. J. ;
Vos, J. A. ;
Nederkoorn, P. J. ;
Wermer, M. J. H. ;
van Walderveen, M. A. A. ;
Staals, J. ;
Hofmeijer, J. ;
van Oostayen, J. A. ;
Nijeholt, G. J. Lycklama A. ;
Boiten, J. ;
Brouwer, P. A. ;
Emmer, B. J. ;
de Bruijn, S. F. ;
van Dijk, L. C. ;
Kappelle, L. J. ;
Lo, R. H. ;
Van Dijk, E. J. ;
de Vries, J. ;
de Kort, P. L. M. ;
van Rooij, W. J. J. ;
van den Berg, J. S. P. ;
van Hasselt, B. A. A. M. ;
Aerden, L. A. M. ;
Dallinga, R. J. ;
Visser, M. C. ;
Bot, J. C. J. ;
Vroomen, P. C. ;
Eshghi, O. ;
Schreuder, T. H. C. M. L. ;
Heijboer, R. J. J. ;
Keizer, K. ;
Tielbeek, A. V. ;
den Hertog, H. M. ;
Gerrits, D. G. ;
van den Berg-Vos, R. M. ;
Karas, G. B. ;
Steyerberg, E. W. ;
Flach, H. Z. ;
Marquering, H. A. ;
Sprengers, M. E. S. ;
Jenniskens, S. F. M. ;
Beenen, L. F. M. ;
van den Berg, R. ;
Koudstaal, P. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (01) :11-20
[5]   More than three passes of stent retriever is an independent predictor of parenchymal hematoma in acute ischemic stroke [J].
Bourcier, Romain ;
Saleme, Suzana ;
Labreuche, Julien ;
Mazighi, Mikael ;
Fahed, Robert ;
Blanc, Raphael ;
Gory, Benjamin ;
Kyheng, Maeva ;
Marnat, Gaultier ;
Bracard, Serge ;
Desal, Hubert ;
Consoli, Arturo ;
Piotin, Michel ;
Lapergue, Bertrand ;
Piotin, M. ;
Blanc, R. ;
Redjem, H. ;
Ciccio, G. ;
Smajda, S. ;
Mazighi, M. ;
Fahed, R. ;
Desilles, J. P. ;
Lapergue, B. ;
Rodesch, G. ;
Consoli, A. ;
Coskun, O. ;
Di Maria, F. ;
Bourdain, F. ;
Decroix, J. P. ;
Wang, A. ;
Tchikviladze, M. ;
Evrard, S. ;
Turjman, F. ;
Gory, B. ;
Labeyrie, P. E. ;
Riva, R. ;
Mounayer, C. ;
Saleme, S. ;
Costalat, V ;
Bonafe, A. ;
Eker, O. ;
Gascou, G. ;
Dargazanli, C. ;
Bracard, S. ;
Tonnelet, R. ;
Derelle, A. L. ;
Anxionnat, R. ;
Desal, H. ;
Bourcier, R. ;
Daumas-Duport, B. .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2019, 11 (07) :625-+
[6]   Time to Reset the Definition of Successful Revascularization in Endovascular Treatment of Acute Ischemic Stroke [J].
Carvalho, Andreia ;
Rocha, Mariana ;
Rodrigues, Marta ;
Gregorio, Tiago ;
Costa, Henrique ;
Cunha, Andre ;
Castro, Sergio ;
Veloso, Miguel ;
Ribeiro, Manuel ;
Goncalves Barros, Pedro Jorge .
CEREBROVASCULAR DISEASES, 2018, 46 (1-2) :40-45
[7]   The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation [J].
Chicco, Davide ;
Jurman, Giuseppe .
BMC GENOMICS, 2020, 21 (01)
[8]   Penumbra and re-canalization acute computed tomography in ischemic stroke evaluation: PRACTISE study protocol [J].
El-Tawil, Salwa ;
Wardlaw, Joanna ;
Ford, Ian ;
Mair, Grant ;
Robinson, Tom ;
Kalra, Lalit ;
Muir, Keith W. .
INTERNATIONAL JOURNAL OF STROKE, 2017, 12 (06) :671-678
[9]   Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003-2020) [J].
Foo, Lee Sze ;
Harston, George ;
Mehndiratta, Amit ;
Yap, Wun-She ;
Hum, Yan Chai ;
Lai, Khin Wee ;
Mukari, Shahizon Azura Mohamed ;
Zaki, Faizah Mohd ;
Tee, Yee Kai .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (08) :3797-3811
[10]   The hyperdense vessel sign on CT predicts successful recanalization with the Merci device in acute ischemic stroke [J].
Froehler, Michael T. ;
Tateshima, Satoshi ;
Duckwiler, Gary ;
Jahan, Reza ;
Gonzalez, Nestor ;
Vinuela, Fernando ;
Liebeskind, David ;
Saver, Jeffrey L. ;
Villablanca, J. Pablo .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2013, 5 (04) :289-293