La-doped BiFeO3 junction based random access multilevel nonvolatile memory

被引:5
|
作者
Li, Dong [1 ]
Zhu, Xiaodong [1 ]
Wu, Yanan [1 ]
Zhao, Jian [1 ]
Zhang, Kaimin [1 ]
Li, Rui [1 ]
Hao, Danni [1 ]
Ma, Yanqing [1 ,2 ]
Moro, Ramiro [1 ]
Ma, Lei [1 ]
机构
[1] Tianjin Univ, Int Ctr Nanoparticles & Nanosyst, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Precis Measuring Technol & Instruments, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Bismuth ferrite; Ferroelectric tunnel junctions; Multilevel resistive switching; Nonvolatile memory; ELECTRORESISTANCE;
D O I
10.1016/j.mee.2022.111908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Resistive switching devices are promising candidates for the next generation nonvolatile memories due to their outstanding performance, simplicity, and scalability. Among them, developing multilevel resistive switching has attracted great attention for its potential in significantly improving information storage density but without extra energy consumption. Although continuous multilevel resistive switching (CMRS) has been observed in many metal oxides and organic materials, achieving random access multilevel nonvolatile memories (RAMNM) with high speed and reliability is still pressingly needed for practical applications. Here, we have successfully fabri-cated a RAMNM based on high-performance pulse-width modulated memristive ferroelectric tunnel junctions (FTJs) of Pt/La0.1Bi0.9FeO3/Nb:SrTiO3 with giant switching ratios above 4 x 105 at room temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] High-Performance Photovoltaic Readable Ferroelectric Nonvolatile Memory Based on La-Doped BiFeO3 Films
    Li, Dong
    Zheng, Dongxing
    Jin, Chao
    Zheng, Wanchao
    Bai, Haili
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) : 19836 - 19843
  • [2] Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches
    Li, Mi
    Zhuge, Fei
    Zhu, Xiaojian
    Yin, Kuibo
    Wang, Jinzhi
    Liu, Yiwei
    He, Congli
    Chen, Bin
    Li, Run-Wei
    NANOTECHNOLOGY, 2010, 21 (42)
  • [3] Domain Wall Conductivity in La-Doped BiFeO3
    Seidel, J.
    Maksymovych, P.
    Batra, Y.
    Katan, A.
    Yang, S. -Y.
    He, Q.
    Baddorf, A. P.
    Kalinin, S. V.
    Yang, C. -H.
    Yang, J. -C.
    Chu, Y. -H.
    Salje, E. K. H.
    Wormeester, H.
    Salmeron, M.
    Ramesh, R.
    PHYSICAL REVIEW LETTERS, 2010, 105 (19)
  • [4] Enhanced Multiferroic Properties of Nanocrystalline La-Doped BiFeO3
    Hossain, S. K. M.
    Mukherjee, A.
    Chakraborty, S.
    Yusuf, S. M.
    Basu, S.
    Pal, M.
    MATERIALS FOCUS, 2013, 2 (02) : 92 - 98
  • [5] La-doped BiFeO3: Synthesis and multiferroic property study
    Lin Peng-Ting
    Li Xiang
    Zhang Li
    Yin Jin-Hua
    Cheng Xing-Wang
    Wang Zhi-Hong
    Wu Yu-Chuan
    Wu Guang-Heng
    CHINESE PHYSICS B, 2014, 23 (04)
  • [6] La-doped BiFeO3:Synthesis and multiferroic property study
    蔺鹏婷
    李祥
    张丽
    阴津华
    程兴旺
    王志宏
    吴玉娟
    吴光恒
    Chinese Physics B, 2014, 23 (04) : 576 - 581
  • [7] Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films
    Lazenka, V. V.
    Ravinski, A. F.
    Makoed, I. I.
    Vanacken, J.
    Zhang, G.
    Moshchalkov, V. V.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (12)
  • [8] Electronic structure and electrochemical properties of La-doped BiFeO3 nanoparticles
    Kumar, Shalendra
    Srivastava, Garima
    Almutairi, Ghazzai
    Ahmed, Faheem
    Shaalan, Nagih M.
    Dalela, Saurabh
    Kumar, Rajesh
    Kumar, Avvaru Praveen
    Alvi, P. A.
    Chae, K. H.
    Hammud, Hassan H.
    Kumari, Kavita
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2021, 253
  • [9] Preparation and Properties of Multiferroic La-Doped BiFeO3 thin Film
    Zhang, Xiaoyan
    Qi, Xiwei
    Qi, Jianquan
    Wang, Xuan
    NANOTECHNOLOGY AND ADVANCED MATERIALS, 2012, 486 : 417 - 421
  • [10] High-performance ferroelectric non-volatile memory based on La-doped BiFeO3 thin films
    Dai, Wanqiong
    Li, Yuanxiang
    Jia, Caihong
    Kang, Chaoyang
    Li, Mengxin
    Zhang, Weifeng
    RSC ADVANCES, 2020, 10 (31) : 18039 - 18043