Diameter and Laplace Eigenvalue Estimates for Left-invariant Metrics on Compact Lie Groups

被引:1
|
作者
Lauret, Emilio A. [1 ]
机构
[1] Univ Nacl Sur, CONICET, Dept Matemat, Inst Matemat INMABB, Bahia Blanca, Buenos Aires, Argentina
关键词
Laplace; Eigenvalue estimate; Diameter; Left-invariant metric; Homogeneous metric; 1ST EIGENVALUE; INJECTIVITY RADIUS; RIGIDITY; SPACES;
D O I
10.1007/s11118-021-09932-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact connected Lie group of dimension m. Once a bi-invariant metric on G is fixed, left-invariant metrics on G are in correspondence with m x m positive definite symmetric matrices. We estimate the diameter and the smallest positive eigenvalue of the Laplace-Beltrami operator associated to a left-invariant metric on G in terms of the eigenvalues of the corresponding positive definite symmetric matrix. As a consequence, we give partial answers to a conjecture by Eldredge, Gordina and Saloff-Coste; namely, we give large subsets S of the space of left-invariant metricsMon G such that there exists a positive real number C depending on G and S such that lambda(1)(G, g)diam(G, g)(2) <= C for all g epsilon S. The existence of the constant C for S = Mis the original conjecture.
引用
收藏
页码:37 / 70
页数:34
相关论文
共 24 条
  • [21] The moduli space of left-invariant metrics on six-dimensional characteristically solvable nilmanifolds
    Cardoso, Isolda
    Cosgaya, Ana
    Reggiani, Silvio
    MATHEMATISCHE NACHRICHTEN, 2025,
  • [22] Homogeneous Einstein (α, β)-metrics on compact simple Lie groups and spheres
    Yan, Zaili
    Deng, Shaoqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 148 : 147 - 160
  • [23] Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds
    Chen, Huibin
    Chen, Zhiqi
    Wolf, Joseph A.
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (08) : 846 - 851
  • [24] The Ricci flow of left-invariant metrics on full flag manifold SU(3)/T from a dynamical systems point of view
    Grama, Lino
    Martins, Ricardo Miranda
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (05): : 463 - 469