Diameter and Laplace Eigenvalue Estimates for Left-invariant Metrics on Compact Lie Groups

被引:1
|
作者
Lauret, Emilio A. [1 ]
机构
[1] Univ Nacl Sur, CONICET, Dept Matemat, Inst Matemat INMABB, Bahia Blanca, Buenos Aires, Argentina
关键词
Laplace; Eigenvalue estimate; Diameter; Left-invariant metric; Homogeneous metric; 1ST EIGENVALUE; INJECTIVITY RADIUS; RIGIDITY; SPACES;
D O I
10.1007/s11118-021-09932-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact connected Lie group of dimension m. Once a bi-invariant metric on G is fixed, left-invariant metrics on G are in correspondence with m x m positive definite symmetric matrices. We estimate the diameter and the smallest positive eigenvalue of the Laplace-Beltrami operator associated to a left-invariant metric on G in terms of the eigenvalues of the corresponding positive definite symmetric matrix. As a consequence, we give partial answers to a conjecture by Eldredge, Gordina and Saloff-Coste; namely, we give large subsets S of the space of left-invariant metricsMon G such that there exists a positive real number C depending on G and S such that lambda(1)(G, g)diam(G, g)(2) <= C for all g epsilon S. The existence of the constant C for S = Mis the original conjecture.
引用
收藏
页码:37 / 70
页数:34
相关论文
共 24 条