Cryogenic thermo-optic thin-film lithium niobate modulator with an NbN superconducting heater

被引:3
作者
Han, Hailong [1 ,2 ]
Zhang, Xingyu [1 ,2 ]
Xiao, You [1 ,2 ]
Yuan, Pusheng [2 ]
Yu, Huiqin [1 ,2 ]
Wang, Shuna [1 ,2 ]
Li, Heng [3 ]
Xie, Weikeng [3 ]
Lu, Mingzhi [3 ]
Li, Lingyun [1 ,2 ]
Liu, Xiaoping [4 ]
Li, Hao [1 ,2 ]
You, Lixing [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol SIMI, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] CAS Ctr Excellence Superconducting Elect CENSE, Shanghai 200050, Peoples R China
[3] Ori Chip Optoelect Technol Ltd, Ningbo 315000, Peoples R China
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
关键词
cryogenic modulator; lithium niobate; superconductance; LINBO3; SWITCH;
D O I
10.3788/COL202321.081301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose and demonstrate a cryogenic thermo-optic (TO) modulator in x- cut thin-film lithium niobate (TFLN) with an NbN superconducting heater. Compared to a conventional metal heating electrode, a fast and energy-efficient modulation is obtained by placing an NbN superconducting heating electrode above the TFLN waveguide. The transition of the NbN superconducting electrode between superconducting and normal states turns the heating and cooling processes from continuous to discontinuous change. Thus, the energy consumption during the modulation process is reduced proportionally. The rise/fall time of the proposed device is 22 mu s/15 mu s, which has been the fastest response time reported in TFLN thermo-optic modulators so far. The presented TO modulator can easily be used at cryogenic temperatures and has great potential for applications in cryogenic optoelectronics.
引用
收藏
页数:4
相关论文
共 29 条
[1]   Quantum photonics at telecom wavelengths based on lithium niobate waveguides [J].
Alibart, Olivier ;
D'Auria, Virginia ;
De Micheli, Marc ;
Doutre, Florent ;
Kaiser, Florian ;
Labonte, Laurent ;
Lunghi, Tommaso ;
Picholle, Eric ;
Tanzilli, Sebastien .
JOURNAL OF OPTICS, 2016, 18 (10)
[2]   High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate [J].
Celik, Oguz Tolga ;
Sarabalis, Christopher J. ;
Mayor, Felix M. ;
Stokowski, Hubert S. ;
Herrmann, Jason F. ;
McKenna, Timothy P. ;
Lee, Nathan R. A. ;
Jiang, Wentao ;
Multani, Kevin K. S. ;
Safavi-Naeini, Amir H. .
OPTICS EXPRESS, 2022, 30 (13) :23177-23186
[3]   Integrated Thermally Tuned Mach-Zehnder Interferometer in Z-Cut Lithium Niobate Thin Film [J].
Chen, Guanyu ;
Lin, Hong-Lin ;
Ng, Jun Da ;
Danner, Aaron J. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (13) :664-667
[4]   The critical current of superconductors: an historical review [J].
Dew-Hughes, D .
LOW TEMPERATURE PHYSICS, 2001, 27 (9-10) :713-722
[5]  
Elshaari AW, 2020, NAT PHOTONICS, V14, P285, DOI 10.1038/s41566-020-0609-x
[6]   A highly efficient thermo-optic microring modulator assisted by graphene [J].
Gan, Sheng ;
Cheng, Chuantong ;
Zhan, Yaohui ;
Huang, Beiju ;
Gan, Xuetao ;
Li, Shaojuan ;
Lin, Shenghuang ;
Li, Xiaofeng ;
Zhao, Jianlin ;
Chen, Hongda ;
Bao, Qiaoliang .
NANOSCALE, 2015, 7 (47) :20249-20255
[7]   THERMOOPTIC COEFFICIENTS OF LINBO3, LIIO3, AND LITAO3 NONLINEAR CRYSTALS [J].
GHOSH, G .
OPTICS LETTERS, 1994, 19 (18) :1391-1393
[8]   High-speed optical links for data transfer out of 3.4K to room temperature [J].
Han, Hailong ;
Li, Lingyun ;
Yuan, Pusheng ;
Yu, Huiqin ;
Wang, Shuna ;
You, Lixing .
2022 IEEE 15TH WORKSHOP ON LOW TEMPERATURE ELECTRONICS (WOLTE 2022), 2022,
[9]   Superconducting properties of NbN film, bridge and meanders [J].
Joshi, Lalit M. ;
Verma, Apoorva ;
Gupta, Anurag ;
Rout, P. K. ;
Husale, Sudhir ;
Budhani, R. C. .
AIP ADVANCES, 2018, 8 (05)
[10]   Thermo-optic coefficient of silicon at 1550nm and cryogenic temperatures [J].
Komma, J. ;
Schwarz, C. ;
Hofmann, G. ;
Heinert, D. ;
Nawrodt, R. .
APPLIED PHYSICS LETTERS, 2012, 101 (04)