A Single Schottky Barrier MOSFET-Based Leaky Integrate and Fire Neuron for Neuromorphic Computing

被引:6
作者
Bashir, Faisal [1 ]
Zahoor, Furqan [2 ]
Alzahrani, Ali S. [1 ]
Khan, Abdul Raouf [3 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Engn, Al Hasa 31982, Saudi Arabia
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] King Faisal Univ, Dept Comp Sci, Al Hasa 31982, Saudi Arabia
关键词
Leaky integrate and fire; SB-MOSFET; SNN; LIF; neuromorphic computing;
D O I
10.1109/TCSII.2023.3286810
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, a Schottky Barrier MOSFET (SB-MOSFET) based on Impact Ionization mechanism is used to design a leaky integrate and fire (LIF) neuron with considerable enhancement in area, energy and cost is proposed. Using 2D calibrated simulation, we confirmed that SB-MOSFET LIF is able to replicate the neuron behavior precisely without using external circuitry. The proposed LIF neuron shows significantly lower energy per spike of similar to 4 pJ/spike, which is lowest among the single transistor based neurons present in the literature. The recognition precision of 89.2% has been accomplished for Modified National Institute of Standards and Technology (MNIST) image. Besides this, SB-MOSFET doesn't require any doped regions, therefore it can be fabricated with low thermal budget.
引用
收藏
页码:4018 / 4022
页数:5
相关论文
共 21 条
  • [1] [Anonymous], 2018, ATLAS Device S Software
  • [2] Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element
    Burr, Geoffrey W.
    Shelby, Robert M.
    Sidler, Severin
    di Nolfo, Carmelo
    Jang, Junwoo
    Boybat, Irem
    Shenoy, Rohit S.
    Narayanan, Pritish
    Virwani, Kumar
    Giacometti, Emanuele U.
    Kuerdi, Bulent N.
    Hwang, Hyunsang
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) : 3498 - 3507
  • [3] A CMOS Compatible Bulk FinFET-Based Ultra Low Energy Leaky Integrate and Fire Neuron for Spiking Neural Networks
    Chatterjee, Dibyendu
    Kottantharayil, Anil
    [J]. IEEE ELECTRON DEVICE LETTERS, 2019, 40 (08) : 1301 - 1304
  • [4] Ultra-Low Energy LIF Neuron Using Si NIPIN Diode for Spiking Neural Networks
    Das, B.
    Schulze, J.
    Ganguly, U.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2018, 39 (12) : 1832 - 1835
  • [5] Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
    Duan, Qingxi
    Jing, Zhaokun
    Zou, Xiaolong
    Wang, Yanghao
    Yang, Ke
    Zhang, Teng
    Wu, Si
    Huang, Ru
    Yang, Yuchao
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET
    Dutta, Sangya
    Kumar, Vinay
    Shukla, Aditya
    Mohapatra, Nihar R.
    Ganguly, Udayan
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] Mimicry of Excitatory and Inhibitory Artificial Neuron With Leaky Integrate-and-Fire Function by a Single MOSFET
    Han, Joon-Kyu
    Seo, Myungsoo
    Kim, Wu-Kang
    Kim, Moon-Seok
    Kim, Seong-Yeon
    Kim, Myung-Su
    Yun, Gyeong-Jun
    Lee, Geon-Beom
    Yu, Ji-Man
    Choi, Yang-Kyu
    [J]. IEEE ELECTRON DEVICE LETTERS, 2020, 41 (02) : 208 - 211
  • [8] Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics
    Huh, Woong
    Lee, Donghun
    Lee, Chul-Ho
    [J]. ADVANCED MATERIALS, 2020, 32 (51)
  • [9] Analog Complementary Metal-Oxide-Semiconductor Integrate-and-Fire Neuron Circuit for Overflow Retaining in Hardware Spiking Neural Networks
    Hwang, Sungmin
    Lee, Jeong-Jun
    Kwon, Min-Woo
    Baek, Myung-Hyun
    Jang, Taejin
    Chang, Jeesoo
    Lee, Jong-Ho
    Park, Byung-Gook
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (05) : 3117 - 3122
  • [10] Neuromorphic silicon neuron circuits
    Indiveri, Giacomo
    Linares-Barranco, Bernabe
    Hamilton, Tara Julia
    van Schaik, Andre
    Etienne-Cummings, Ralph
    Delbruck, Tobi
    Liu, Shih-Chii
    Dudek, Piotr
    Hafliger, Philipp
    Renaud, Sylvie
    Schemmel, Johannes
    Cauwenberghs, Gert
    Arthur, John
    Hynna, Kai
    Folowosele, Fopefolu
    Saighi, Sylvain
    Serrano-Gotarredona, Teresa
    Wijekoon, Jayawan
    Wang, Yingxue
    Boahen, Kwabena
    [J]. FRONTIERS IN NEUROSCIENCE, 2011, 5