Uncertainty-Aware Source-Free Domain Adaptive Semantic Segmentation

被引:13
作者
Lu, Zhihe [1 ,2 ,3 ]
Li, Da [4 ]
Song, Yi-Zhe [1 ,2 ]
Xiang, Tao [1 ,2 ]
Hospedales, Timothy M. M. [4 ]
机构
[1] Univ Surrey, Ctr Vis Speech & Signal Proc CVSSP, Guildford GU2 7XH, England
[2] Univ Surrey, iFlyTek Surrey Joint Res Ctr Artificial Intellige, Guildford GU2 7XH, England
[3] Natl Univ Singapore, Elect & Comp Engn, Singapore 117583, Singapore
[4] Samsung AI Ctr, Cambridge CB1 2JH, England
关键词
Source-free domain adaptation; semantic segmentation; self-training; Bayesian neural network; uncertainty estimation;
D O I
10.1109/TIP.2023.3295929
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Source-Free Domain Adaptation (SFDA) is becoming topical to address the challenge of distribution shift between training and deployment data, while also relaxing the requirement of source data availability during target domain adaptation. In this paper, we focus on SFDA for semantic segmentation, in which pseudo labeling based target domain self-training is a common solution. However, pseudo labels generated by the source models are particularly unreliable on the target domain data due to the domain shift issue. Therefore, we propose to use Bayesian Neural Network (BNN) to improve the target self-training by better estimating and exploiting pseudo-label uncertainty. With the uncertainty estimation of BNNs, we introduce two novel self-training based components: Uncertainty-aware Online Teacher-Student Learning (UOTSL) and Uncertainty-aware FeatureMix (UFM). Extensive experiments on two popular benchmarks, GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, show the superiority of our proposed method with mIoU gains of 3.6% and 5.7% over the state-of-the-art respectively.
引用
收藏
页码:4664 / 4676
页数:13
相关论文
共 67 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]  
Arbeláez P, 2012, PROC CVPR IEEE, P3378, DOI 10.1109/CVPR.2012.6248077
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]  
Bateson Mathilde, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12261), P490, DOI 10.1007/978-3-030-59710-8_48
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]  
Ciosek Kamil, 2020, INT C LEARNING REPRE
[7]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[8]  
Csurka Gabriela, 2022, Visual Domain Adaptation in the Deep Learning Era. Synthesis Lectures on Computer Vision, P1, DOI 10.2200/s01169ed1v01y202202cov020
[9]  
Csurka G., 2021, arXiv, DOI DOI 10.48550/ARXIV.2112.03241
[10]  
Foong Andrew Y. K., 2020, Advances in Neural Information Processing Systems, V33