Two families of second-order fractional numerical formulas and applications to fractional differential equations

被引:8
作者
Yin, Baoli [1 ]
Liu, Yang [1 ]
Li, Hong [1 ]
Zhang, Zhimin [2 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Convolution quadrature; Fractional BT-; Fractional BN-; A-stable; Superconvergence; Initial singularity; DISCONTINUOUS GALERKIN METHOD; DIFFUSION-EQUATIONS; ALGORITHMS; STABILITY; SCHEMES;
D O I
10.1007/s13540-023-00172-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two families of second-order difference formulas called fractional BT -? and fractional BN-? for the fractional calculus are proposed by introducing a free parameter ? aiming to generalize the classic fractional BDF2, the fractional trapezoidal rule (FTR) and the second-order generalized Newton-Gregory formula (GNGF2). The error bounds for these two families of novel formulas are analysed indicating that fractional BT-21 (or FTR) is superior to other formulas for integral cases. At least two advantages can be observed for the introduction of ? : (i) The fractional BN-? exhibits superconvergence for an appropriate ? which permits us to develop more robust third-order schemes for problems such as the diffusion-wave equation, compared with the fractional BDF3. (ii) The fractional BT -? allows us to take the advantage of FTR that a sub-optimal error bound can be obtained (by taking ? close to (1)/(2)) when directly discretizing fractional derivatives. Further, some correction techniques are discussed to overcome the solution initial singularity in numerical tests. The numerical results confirm the correctness of the theoretical analysis and the efficiency of our scheme.
引用
收藏
页码:1842 / 1867
页数:26
相关论文
共 31 条
  • [11] Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation
    Liu, Yang
    Du, Yanwei
    Li, Hong
    Liu, Fawang
    Wang, Yajun
    [J]. NUMERICAL ALGORITHMS, 2019, 80 (02) : 533 - 555
  • [12] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Liu, Yang
    Du, Yan-Wei
    Li, Hong
    Wang, Jin-Feng
    [J]. NONLINEAR DYNAMICS, 2016, 85 (04) : 2535 - 2548
  • [13] LUBICH C, 1985, MATH COMPUT, V45, P463, DOI 10.1090/S0025-5718-1985-0804935-7
  • [14] DISCRETIZED FRACTIONAL CALCULUS
    LUBICH, C
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) : 704 - 719
  • [15] A STABILITY ANALYSIS OF CONVOLUTION QUADRATURES FOR ABEL-VOLTERRA INTEGRAL-EQUATIONS
    LUBICH, C
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (01) : 87 - 101
  • [16] ERROR ANALYSIS OF A HIGH ORDER METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Lv, Chunwan
    Xu, Chuanju
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) : A2699 - A2724
  • [17] A second-order accurate numerical method for a fractional wave equation
    McLean, William
    Mustapha, Kassem
    [J]. NUMERISCHE MATHEMATIK, 2007, 105 (03) : 481 - 510
  • [18] SUPERCONVERGENCE OF A DISCONTINUOUS GALERKIN METHOD FOR FRACTIONAL DIFFUSION AND WAVE EQUATIONS
    Mustapha, Kassem
    Mclean, William
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 491 - 515
  • [19] Podlubny I., 1999, Fractional differential equations. Mathematics in science and engineering
  • [20] Quarteroni Alfio, 2010, Numerical mathematics, V37