MOPA: An integrative multi-omics pathway analysis method for measuring omics activity

被引:1
|
作者
Jeon, Jaemin [2 ]
Han, Eon Yong [1 ]
Jung, Inuk [1 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, Deagu, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea
来源
PLOS ONE | 2023年 / 18卷 / 03期
关键词
CONSENSUS MOLECULAR SUBTYPES; GASTRIC-CANCER; EXPRESSION; METHYLATION;
D O I
10.1371/journal.pone.0278272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pathways are composed of proteins forming a network to represent specific biological mechanisms and are often used to measure enrichment scores based on a list of genes in means to measure their biological activity. The pathway analysis is a de facto standard downstream analysis procedure in most genomic and transcriptomic studies. Here, we present MOPA (Multi-Omics Pathway Analysis), which is a multi-omics integrative method that scores individual pathways in a sample wise manner in terms of enriched multi-omics regulatory activity, which we refer to mES (multi-omics Enrichment Score). The mES score reflects the strength of regulatory relations between multi-omics in units of pathways. In addition, MOPA is able to measure how much each omics contribute to mES that may be used to observe what kind of omics are active in a pathway within a sample group (e.g., subtype, gender), which we refer to OCR (Omics Contribution Rate). Using nine different cancer types, 93 clinical features and three types of omics (i.e., gene expression, miRNA and methylation), MOPA was used to search for clinical features that were explainable in context of multi-omics. By evaluating the performance of MOPA, we showed that it yielded higher or at least equal performance compared to previous single and multi-omics pathway analysis tools. We find that the advantage of MOPA is the ability to explain pathways in terms of omics relation using mES and OCR. As one of the results, the TGF-beta signaling pathway was captured as an important pathway that showed distinct mES and OCR values specific to the CMS4 subtype in colon adenocarcinoma. The mES and OCR metrics suggested that the mRNA and miRNA expressions were significantly different from the other subtypes, which was concordant with previous studies. The MOPA software is available at https://github.com/jaeminjj/MOPA.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A pan-cancer integrative pathway analysis of multi-omics data
    Henry Linder
    Yuping Zhang
    Quantitative Biology, 2020, 8 (02) : 130 - 142
  • [2] A pan-cancer integrative pathway analysis of multi-omics data
    Linder, Henry
    Zhang, Yuping
    QUANTITATIVE BIOLOGY, 2020, 8 (02) : 130 - 142
  • [3] A Customizable Analysis Flow in Integrative Multi-Omics
    Lancaster, Samuel M.
    Sanghi, Akshay
    Wu, Si
    Snyder, Michael P.
    BIOMOLECULES, 2020, 10 (12) : 1 - 15
  • [4] An integrative imputation method based on multi-omics datasets
    Dongdong Lin
    Jigang Zhang
    Jingyao Li
    Chao Xu
    Hong-Wen Deng
    Yu-Ping Wang
    BMC Bioinformatics, 17
  • [5] An integrative imputation method based on multi-omics datasets
    Lin, Dongdong
    Zhang, Jigang
    Li, Jingyao
    Xu, Chao
    Deng, Hong-Wen
    Wang, Yu-Ping
    BMC BIOINFORMATICS, 2016, 17
  • [6] MULTI-OMICS INTEGRATIVE PATHWAY ANALYSIS IN HEAD AND NECK SQUAMOUS CELL CARCINOMA
    Esteves, Luisa
    Ribeiro, Ilda P.
    Caramelo, Francisco
    Carreira, Isabel M.
    Melo, Joana B.
    MEDICINE, 2021, 100 (04)
  • [7] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Hagenbeek, Fiona A.
    van Dongen, Jenny
    Pool, Rene
    Roetman, Peter J.
    Harms, Amy C.
    Hottenga, Jouke Jan
    Kluft, Cornelis
    Colins, Olivier F.
    van Beijsterveldt, Catharina E. M.
    Fanos, Vassilios
    Ehli, Erik A.
    Hankemeier, Thomas
    Vermeiren, Robert R. J. M.
    Bartels, Meike
    Dejean, Sebastien
    Boomsma, Dorret, I
    BEHAVIOR GENETICS, 2023, 53 (02) : 101 - 117
  • [8] MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis
    Maes, Alexandre
    Martinez, Xavier
    Druart, Karen
    Laurent, Benoist
    Guegan, Sean
    Marchand, Christophe H.
    Lemaire, Stephane D.
    Baaden, Marc
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2018, 15 (02)
  • [9] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Fiona A. Hagenbeek
    Jenny van Dongen
    René Pool
    Peter J. Roetman
    Amy C. Harms
    Jouke Jan Hottenga
    Cornelis Kluft
    Olivier F. Colins
    Catharina E. M. van Beijsterveldt
    Vassilios Fanos
    Erik A. Ehli
    Thomas Hankemeier
    Robert R. J. M. Vermeiren
    Meike Bartels
    Sébastien Déjean
    Dorret I. Boomsma
    Behavior Genetics, 2023, 53 : 101 - 117
  • [10] Integrative Multi-Omics in Biomedical Research
    Hill, Michelle M.
    Gerner, Christopher
    BIOMOLECULES, 2021, 11 (10)