Optimal calibration of optical tweezers with arbitrary integration time and sampling frequencies: a general framework [Invited]

被引:4
作者
Perez-Garcia, Laura [1 ]
Selin, Martin [1 ]
Ciarlo, Antonio [1 ,2 ]
Magazzu, Alessandro [1 ]
Pesce, Giuseppe [1 ,2 ]
Sasso, Antonio [2 ]
Volpe, Giovanni [1 ]
Castillo, Isaac Perez [3 ]
Arzola, Alejandro V. [4 ]
机构
[1] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden
[2] Univ Naples Federico II, Complesso Univ Monte St Angelo, Dept Phys E Pancini, Via Cintia, I-80126 Naples, Italy
[3] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, San Rafael Atlixco 186, Ciudad De Mexico 09340, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Fis, Dept Mat Condensada, Cd De Mexico 04510, Mexico
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
PARTICLE TRACKING; TRAP; SIMULATION; FORCES; ERRORS;
D O I
10.1364/BOE.495468
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical tweezers (OT) have become an essential technique in several fields of physics, chemistry, and biology as precise micromanipulation tools and microscopic force transducers. Quantitative measurements require the accurate calibration of the trap stiffness of the optical trap and the diffusion constant of the optically trapped particle. This is typically done by statistical estimators constructed from the position signal of the particle, which is recorded by a digital camera or a quadrant photodiode. The finite integration time and sampling frequency of the detector need to be properly taken into account. Here, we present a general approach based on the joint probability density function of the sampled trajectory that corrects exactly the biases due to the detector's finite integration time and limited sampling frequency, providing theoretical formulas for the most widely employed calibration methods: equipartition, mean squared displacement, autocorrelation, power spectral density, and force reconstruction via maximum-likelihood-estimator analysis (FORMA). Our results, tested with experiments and Monte Carlo simulations, will permit users of OT to confidently estimate the trap stiffness and diffusion constant, extending their use to a broader set of experimental conditions.
引用
收藏
页码:6442 / 6469
页数:28
相关论文
共 36 条
[1]   Spin to orbital light momentum conversion visualized by particle trajectory [J].
Arzola, Alejandro V. ;
Chvatal, Lukas ;
Jakl, Petr ;
Zemanek, Pavel .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Power spectrum analysis for optical tweezers [J].
Berg-Sorensen, K ;
Flyvbjerg, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (03) :594-612
[3]   Statistics of camera-based single-particle tracking [J].
Berglund, Andrew J. .
PHYSICAL REVIEW E, 2010, 82 (01)
[4]   Errors in Energy Landscapes Measured with Particle Tracking [J].
Bogdan, Michal J. ;
Savin, Thierry .
BIOPHYSICAL JOURNAL, 2018, 115 (01) :139-149
[5]   Revisiting the Central Dogma One Molecule at a Time [J].
Bustamante, Carlos ;
Cheng, Wei ;
Meija, Yara X. .
CELL, 2011, 144 (04) :480-497
[6]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[7]   Optical tweezers - from calibration to applications: a tutorial [J].
Gieseler, Jan ;
Gomez-Solano, Juan Ruben ;
Magazzu, Alessandro ;
Castillo, Isaac Perez ;
Garcia, Laura Perez ;
Gironella-Torrent, Marta ;
Viader-Godoy, Xavier ;
Ritort, Felix ;
Pesce, Giuseppe ;
Arzola, Alejandro, V ;
Volke-Sepulveda, Karen ;
Volpe, Giovanni .
ADVANCES IN OPTICS AND PHOTONICS, 2021, 13 (01) :74-241
[8]   Monte-Carlo simulation of optical trap stiffness measurement [J].
Gong, Zan ;
Chen, Hongtao ;
Xu, Shenghua ;
Li, Yinmei ;
Lou, Liren .
OPTICS COMMUNICATIONS, 2006, 263 (02) :229-234
[9]   Levitodynamics: Levitation and control of microscopic objects in vacuum [J].
Gonzalez-Ballestero, C. ;
Aspelmeyer, M. ;
Novotny, L. ;
Quidant, R. ;
Romero-Isart, O. .
SCIENCE, 2021, 374 (6564) :168-+
[10]  
Jones PH, 2015, OPTICAL TWEEZERS: PRINCIPLES AND APPLICATIONS, P1, DOI 10.1017/CBO9781107279711