CNN-based Methods for Offline Arabic Handwriting Recognition: A Review

被引:1
作者
El Khayati, Mohsine [1 ]
Kich, Ismail [2 ]
Taouil, Youssef [3 ]
机构
[1] Univ Ibn Tofail, Fac Sci, Dept Math, Kenitra, Morocco
[2] Univ Ibn Tofail, Fac Sci, Dept Comp Sci, Kenitra, Morocco
[3] Univ Cadi Ayyad, Higher Sch Technol, Comp Engn & Math Dept, Essaouira, Morocco
关键词
Arabic handwriting recognition; Convolutional neural networks; Deep learning; CHARACTER-RECOGNITION; NEURAL-NETWORKS; DATASET;
D O I
10.1007/s11063-024-11544-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Arabic Handwriting Recognition (AHR) is a complex task involving the transformation of handwritten Arabic text from image format into machine-readable data, holding immense potential across various applications. Despite its significance, AHR encounters formidable challenges due to the intricate nature of Arabic script and the diverse array of handwriting styles. In recent years, Convolutional Neural Networks (CNNs) have emerged as a pivotal and promising solution to address these challenges, demonstrating remarkable performance and offering distinct advantages. However, the dominance of CNNs in AHR lacks a dedicated comprehensive review in the existing literature. This review article aims to bridge the existing gap by providing a comprehensive analysis of CNN-based methods in AHR. It covers both segmentation and recognition tasks, delving into advancements in network architectures, databases, training strategies, and employed methods. The article offers an in-depth comparison of these methods, considering their respective strengths and limitations. The findings of this review not only contribute to the current understanding of CNN applications in AHR but also pave the way for future research directions and improved practices, thereby enriching and advancing this critical domain. The review also aims to uncover genuine challenges in the domain, providing valuable insights for researchers and practitioners.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Loss Functions for CNN-based Biometric Vein Recognition
    Kuzu, Ridvan Salih
    Maiorana, Emanuele
    Campisi, Patrizio
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 750 - 754
  • [32] Evaluation of CNN-Based Single-Image Depth Estimation Methods
    Koch, Tobias
    Liebel, Lukas
    Fraundorfer, Friedrich
    Koerner, Marco
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 331 - 348
  • [33] Improving the DBLSTM for on-line Arabic handwriting recognition
    Maalej, Rania
    Kherallah, Monji
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (25-26) : 17969 - 17990
  • [34] Knock Knock, Who's There: Facial Recognition using CNN-based Classifiers
    Sun, Qiyu
    Redei, Alexander
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 9 - 16
  • [35] Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning
    Wang, Danshi
    Zhang, Min
    Li, Ze
    Li, Jin
    Fu, Meixia
    Cui, Yue
    Chen, Xue
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (19) : 1667 - 1670
  • [36] A new Efficient Graphemes Segmentation Technique for Offline Arabic Handwriting
    Eraqi, Hesham M.
    Abdelazeem, Sherif
    13TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR 2012), 2012, : 95 - 100
  • [37] Carcass image segmentation using CNN-based methods
    Gonçalves D.N.
    Weber V.A.D.M.
    Pistori J.G.B.
    Gomes R.D.C.
    de Araujo A.V.
    Pereira M.F.
    Gonçalves W.N.
    Pistori H.
    Pistori, Hemerson (pistori@ucdb.br), 1600, China Agricultural University (08) : 560 - 572
  • [38] Fusion Methods for CNN-Based Automatic Modulation Classification
    Zheng, Shilian
    Qi, Peihan
    Chen, Shichuan
    Yang, Xiaoniu
    IEEE ACCESS, 2019, 7 : 66496 - 66504
  • [39] COMPARISON OF UNCERTAINTY QUANTIFICATION METHODS FOR CNN-BASED REGRESSION
    Wursthorn, K.
    Hillemann, M.
    Ulrich, M.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 721 - 728
  • [40] Markov models for offline handwriting recognition: a survey
    Ploetz, Thomas
    Fink, Gernot A.
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2009, 12 (04) : 269 - 298