Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

被引:127
作者
Tropsha, Alexander [1 ]
Isayev, Olexandr [2 ]
Varnek, Alexandre [3 ]
Schneider, Gisbert [4 ]
Cherkasov, Artem [5 ,6 ]
机构
[1] Univ North Carolina, Chapel Hill, NC 27599 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
[3] Univ Strasbourg, Strasbourg, France
[4] ETH, Zurich, Switzerland
[5] Univ British Columbia, Vancouver, BC, Canada
[6] Photonic Inc, Coquitlam, BC, Canada
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ARTIFICIAL-INTELLIGENCE; CHEMICAL-REACTIONS; MOLECULAR DESIGN; NEURAL-NETWORKS; PREDICTION; CHEMOGRAPHY; DOCKING; REPRESENTATION; GENERATION; LIBRARIES;
D O I
10.1038/s41573-023-00832-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Quantitative structure-activity relationship (QSAR) modelling, an approach that was introduced 60 years ago, is widely used in computer-aided drug design. In recent years, progress in artificial intelligence techniques, such as deep learning, the rapid growth of databases of molecules for virtual screening and dramatic improvements in computational power have supported the emergence of a new field of QSAR applications that we term 'deep QSAR'. Marking a decade from the pioneering applications of deep QSAR to tasks involved in small-molecule drug discovery, we herein describe key advances in the field, including deep generative and reinforcement learning approaches in molecular design, deep learning models for synthetic planning and the application of deep QSAR models in structure-based virtual screening. We also reflect on the emergence of quantum computing, which promises to further accelerate deep QSAR applications and the need for open-source and democratized resources to support computer-aided drug design. Advances with deep learning, the growth of databases of molecules for virtual screening and improvements in computational power have supported the emergence of a new field of quantitative structure-activity relationship (QSAR) modelling applications that Tropsha et al. term 'deep QSAR'. This article discusses key advances in the field, including deep generative and reinforcement learning approaches in molecular design, deep learning models for synthetic planning, and the use of deep QSAR models in structure-based virtual screening.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 163 条
[51]   Large-Scale Virtual Screening for the Discovery of SARS-CoV-2 Papain-like Protease (PLpro) Non-covalent Inhibitors [J].
Garland, Olivia ;
Ton, Anh-Tien ;
Moradi, Shoeib ;
Smith, Jason R. ;
Kovacic, Suzana ;
Ng, Kurtis ;
Pandey, Mohit ;
Ban, Fuqiang ;
Lee, Jaeyong ;
Vuckovic, Marija ;
Worrall, Liam J. ;
Young, Robert N. ;
Pantophlet, Ralph ;
Strynadka, Natalie C. J. ;
Cherkasov, Artem .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (07) :2158-2169
[52]   AiZynthTrain: Robust, Reproducible, and Extensible Pipelines for Training Synthesis Prediction Models [J].
Genheden, Samuel ;
Norrby, Per-Ola ;
Engkvist, Ola .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (07) :1841-1846
[53]   AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning [J].
Genheden, Samuel ;
Thakkar, Amol ;
Chadimova, Veronika ;
Reymond, Jean-Louis ;
Engkvist, Ola ;
Bjerrum, Esben .
JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
[54]   Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking [J].
Gentile, Francesco ;
Yaacoub, Jean Charle ;
Gleave, James ;
Fernandez, Michael ;
Ton, Anh-Tien ;
Ban, Fuqiang ;
Stern, Abraham ;
Cherkasov, Artem .
NATURE PROTOCOLS, 2022, 17 (03) :672-+
[55]   Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules [J].
Gentile, Francesco ;
Fernandez, Michael ;
Ban, Fuqiang ;
Ton, Anh-Tien ;
Mslati, Hazem ;
Perez, Carl F. ;
Leblanc, Eric ;
Yaacoub, Jean Charle ;
Gleave, James ;
Stern, Abraham ;
Wong, Bill ;
Jean, Francois ;
Strynadka, Natalie ;
Cherkasov, Artem .
CHEMICAL SCIENCE, 2021, 12 (48) :15960-15974
[56]   Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery [J].
Gentile, Francesco ;
Agrawal, Vibudh ;
Hsing, Michael ;
Ton, Anh-Tien ;
Ban, Fuqiang ;
Norinder, Ulf ;
Gleave, Martin E. ;
Cherkasov, Artem .
ACS CENTRAL SCIENCE, 2020, 6 (06) :939-949
[57]   Assessment of tautomer distribution using the condensed reaction graph approach [J].
Gimadiev, T. R. ;
Madzhidov, T. I. ;
Nugmanov, R. I. ;
Baskin, I. I. ;
Antipin, I. S. ;
Varnek, A. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (03) :401-414
[58]   Bimolecular Nucleophilic Substitution Reactions: Predictive Models for Rate Constants and Molecular Reaction Pairs Analysis [J].
Gimadiev, Timur ;
Madzhidov, Timur ;
Tetko, Igor ;
Nugmanov, Ramil ;
Casciuc, Iury ;
Klimchuk, Olga ;
Bodrov, Andrey ;
Polishchuk, Pavel ;
Antipin, Igor ;
Varnek, Alexandre .
MOLECULAR INFORMATICS, 2019, 38 (04)
[59]   Predictive Models for Kinetic Parameters of Cycloaddition Reactions [J].
Glavatskikh, Marta ;
Madzhidov, Timur ;
Horvath, Dragos ;
Nugmanov, Ramil ;
Gimadiev, Timur ;
Malakhova, Daria ;
Marcou, Gilles ;
Varnek, Alexandre .
MOLECULAR INFORMATICS, 2019, 38 (1-2)
[60]   Prediction of protein pKa with representation learning [J].
Gokcan, Hatice ;
Isayev, Olexandr .
CHEMICAL SCIENCE, 2022, 13 (08) :2462-2474