Quantitative structure-activity relationship (QSAR) modelling, an approach that was introduced 60 years ago, is widely used in computer-aided drug design. In recent years, progress in artificial intelligence techniques, such as deep learning, the rapid growth of databases of molecules for virtual screening and dramatic improvements in computational power have supported the emergence of a new field of QSAR applications that we term 'deep QSAR'. Marking a decade from the pioneering applications of deep QSAR to tasks involved in small-molecule drug discovery, we herein describe key advances in the field, including deep generative and reinforcement learning approaches in molecular design, deep learning models for synthetic planning and the application of deep QSAR models in structure-based virtual screening. We also reflect on the emergence of quantum computing, which promises to further accelerate deep QSAR applications and the need for open-source and democratized resources to support computer-aided drug design. Advances with deep learning, the growth of databases of molecules for virtual screening and improvements in computational power have supported the emergence of a new field of quantitative structure-activity relationship (QSAR) modelling applications that Tropsha et al. term 'deep QSAR'. This article discusses key advances in the field, including deep generative and reinforcement learning approaches in molecular design, deep learning models for synthetic planning, and the use of deep QSAR models in structure-based virtual screening.
机构:
AstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, SwedenAstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, Sweden
Chen, Hongming
Engkvist, Ola
论文数: 0引用数: 0
h-index: 0
机构:
AstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, SwedenAstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, Sweden
Engkvist, Ola
Wang, Yinhai
论文数: 0引用数: 0
h-index: 0
机构:
AstraZeneca, Innovat Med & Early Dev Biotech Unit, Discovery Sci, Quantitat Biol, Unit 310,Cambridge Sci Pk,Milton Rd, Cambridge CB4 0WG, EnglandAstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, Sweden
Wang, Yinhai
Olivecrona, Marcus
论文数: 0引用数: 0
h-index: 0
机构:
AstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, SwedenAstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, Sweden
Olivecrona, Marcus
Blaschke, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
AstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, SwedenAstraZeneca R&D Gothenburg, Innovat Med & Early Dev Biotech Unit, Hit Discovery, Discovery Sci, S-43183 Molndal, Sweden
机构:
Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia
Kazan Fed Univ, Butlerov Inst Chem, Kazan, RussiaMoscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia
机构:
KaiPharm Co Ltd, Seoul 03759, South KoreaKaiPharm Co Ltd, Seoul 03759, South Korea
Kim, Jintae
Park, Sera
论文数: 0引用数: 0
h-index: 0
机构:
KaiPharm Co Ltd, Seoul 03759, South KoreaKaiPharm Co Ltd, Seoul 03759, South Korea
Park, Sera
Min, Dongbo
论文数: 0引用数: 0
h-index: 0
机构:
Ewha Womans Univ, Dept Comp Sci & Engn, Comp Vis Lab, Seoul 03760, South KoreaKaiPharm Co Ltd, Seoul 03759, South Korea
Min, Dongbo
Kim, Wankyu
论文数: 0引用数: 0
h-index: 0
机构:
KaiPharm Co Ltd, Seoul 03759, South Korea
Ewha Womans Univ, Dept Life Sci, Syst Pharmacol Lab, Seoul 03760, South KoreaKaiPharm Co Ltd, Seoul 03759, South Korea