Calibrating Neural Networks for CTR Prediction

被引:0
作者
Bicici, Ergun [1 ]
Saribas, Hasan [1 ]
机构
[1] Huawei Turkiye R&D Ctr, AI Enablement, Istanbul, Turkiye
来源
2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2023年
关键词
calibration; neural networks; CTR;
D O I
10.1109/SIU59756.2023.10223867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibration methods fix the prediction errors of a machine learning model after it is trained and enable more robust and more confident prediction. We implement isotonic regression, Platt's scaling, neural networks, spline regression, and temperature scaling as calibration techniques on the prediction of click-through rate (CTR), which is an unbalanced task. We compare the improvements on using 3 neural network based CTR prediction models, Masknet, DeepFM, and DCNv2, on the publicly available CTR dataset Avazu. Our results demonstrate that isotonic and spline regression methods improve the most and isotonic regression is the fastest method.
引用
收藏
页数:4
相关论文
共 10 条
  • [1] ACTIVE SET ALGORITHMS FOR ISOTONIC REGRESSION - A UNIFYING FRAMEWORK
    BEST, MJ
    CHAKRAVARTI, N
    [J]. MATHEMATICAL PROGRAMMING, 1990, 47 (03) : 425 - 439
  • [2] Guo CA, 2017, PR MACH LEARN RES, V70
  • [3] Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725
  • [4] An Experimental Investigation of Calibration Techniques for Imbalanced Data
    Huang, Lanlan
    Zhao, Junkai
    Zhu, Bing
    Chen, Hao
    Vanden Broucke, Seppe
    [J]. IEEE ACCESS, 2020, 8 : 127343 - 127352
  • [5] Junmei Bao, 2020, Information Retrieval. 26th China Conference, CCIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12285), P29, DOI 10.1007/978-3-030-56725-5_3
  • [6] Mukhoti J., Advances in Neural Information Processing Systems, P15288
  • [7] Niculescu-Mizil A, 2005, 22 INT C MACHINE LEA
  • [8] Wang D.-B., ADV NEURAL INFORM PR, P11809
  • [9] DCN V2: Improved Deep & Cross Network and Practical Lessons forWeb-scale Learning to Rank Systems
    Wang, Ruoxi
    Shivanna, Rakesh
    Cheng, Derek
    Jain, Sagar
    Lin, Dong
    Hong, Lichan
    Chi, Ed
    [J]. PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1785 - 1797
  • [10] Wang Z., 2021, DLP KDD 21