Understanding the Influence of Li7La3Zr2O12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes

被引:12
作者
Counihan, Michael J. [1 ]
Powers, Devon J. [2 ]
Barai, Pallab [2 ]
Hu, Shiyu [2 ]
Zagorac, Teodora [3 ]
Zhou, Yundong [4 ]
Lee, Jungkuk [2 ]
Connell, Justin G. [5 ]
Chavan, Kanchan S. [6 ]
Gilmore, Ian S. [4 ]
Hanley, Luke [3 ]
Srinivasan, Venkat [6 ]
Zhang, Yuepeng [2 ]
Tepavcevic, Sanja [1 ]
机构
[1] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
[3] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[4] NiCE MSI, Natl Phys Lab, Teddington TW11 0LW, England
[5] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA
[6] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
关键词
lithium metalbattery; composite; polymer; solid electrolyte; critical current; Coulombicefficiency; dendrite; SOLID-STATE; IONIC-CONDUCTIVITY; LITHIUM BATTERIES; TRANSPORT-PROPERTIES; CERAMIC FILLERS; ENHANCEMENT; INHIBITION; CHALLENGES; NANOWIRES; STABILITY;
D O I
10.1021/acsami.3c04262
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite polymer electrolytes (CPEs)are attractive materialsfor solid-state lithium metal batteries, owing to their high ionicconductivity from ceramic ionic conductors and flexibility from polymercomponents. As with all lithium metal batteries, however, CPEs facethe challenge of dendrite formation and propagation. Not only doesthis lower the critical current density (CCD) before cell shorting,but the uncontrolled growth of lithium deposits may limit Coulombicefficiency (CE) by creating dead lithium. Here, we present a fundamentalstudy on how the ceramic components of CPEs influence these characteristics.CPE membranes based on poly-(ethylene oxide) and lithium bis-(trifluoromethanesulfonyl)-imide(PEO-LiTFSI) with Li7La3Zr2O12 (LLZO) nanofibers were fabricated with industrially relevantroll-to-roll manufacturing techniques. Galvanostatic cycling withlithium symmetric cells shows that the CCD can be tripled by including50 wt % LLZO, but half-cell cycling reveals that this comes at thecost of CE. Varying the LLZO loading shows that even a small amountof LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77%at just 2 wt % LLZO. Mesoscale modeling reveals that the increasein CCD cannot be explained by an increase in the macroscopic or microscopicstiffness of the electrolyte; only the microstructure of the LLZOnanofibers in the PEO-LiTFSI matrix slows dendrite growth by presentingphysical barriers that the dendrites must push or grow around. Thistortuous lithium growth mechanism around the LLZO is corroboratedwith mass spectrometry imaging. This work highlights important elementsto consider in the design of CPEs for high-efficiency lithium metalbatteries.
引用
收藏
页码:26047 / 26059
页数:13
相关论文
共 74 条
[1]   Current Status and Future Perspective on Lithium Metal Anode Production Methods [J].
Acebedo, Begona ;
Morant-Minana, Maria C. ;
Gonzalo, Elena ;
de Larramendi, Idoia Ruiz ;
Villaverde, Aitor ;
Rikarte, Jokin ;
Fallarino, Lorenzo .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)
[2]   Challenges for and Pathways toward Li-MetalBased All-Solid-State Batteries [J].
Albertus, Paul ;
Anandan, Venkataramani ;
Ban, Chunmei ;
Balsara, Nitash ;
Belharouak, Ilias ;
Buettner-Garrett, Josh ;
Chen, Zonghai ;
Daniel, Claus ;
Doeff, Marca ;
Dudney, Nancy J. ;
Dunn, Bruce ;
Harris, Stephen J. ;
Herle, Subramanya ;
Herbert, Eric ;
Kalnaus, Sergiy ;
Libera, Joesph A. ;
Lu, Dongping ;
Martin, Steve ;
McCloskey, Bryan D. ;
McDowell, Matthew T. ;
Meng, Y. Shirley ;
Nanda, Jagjit ;
Sakamoto, Jeff ;
Self, Ethan C. ;
Tepavcevic, Sanja ;
Wachsman, Eric ;
Wang, Chunsheng ;
Westover, Andrew S. ;
Xiao, Jie ;
Yersak, Thomas .
ACS ENERGY LETTERS, 2021, 6 (04) :1399-1404
[3]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[4]   12 μm-Thick Sintered Garnet Ceramic Skeleton Enabling High-Energy-Density Solid-State Lithium Metal Batteries [J].
Bao, Chengshuai ;
Zheng, Chujun ;
Wu, Meifen ;
Zhang, Yan ;
Jin, Jun ;
Chen, Huan ;
Wen, Zhaoyin .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)
[5]   Reaction Current Heterogeneity at the Interface between a Lithium Electrode and Polymer/Ceramic Composite Electrolytes [J].
Barai, Pallab ;
Fuchs, Till ;
Trevisanello, Enrico ;
Kim, Hong Keun ;
Richter, Felix H. ;
Janek, Juergen ;
Srinivasan, Venkat .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (04) :2160-2177
[6]   The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes [J].
Barai, Pallab ;
Ngo, Anh T. ;
Narayanan, Badri ;
Higa, Kenneth ;
Curtiss, Larry A. ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
[7]   Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A180-A189
[8]   Unveiling Interfacial Li-Ion Dynamics in Li7La3Zr2O12/PEO(LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries [J].
Bonilla, Mauricio R. ;
Daza, Fabian A. Garcia ;
Ranque, Pierre ;
Aguesse, Frederic ;
Carrasco, Javier ;
Akhmatskaya, Elena .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) :30653-30667
[9]   The quest for the holy grail of solid-state lithium batteries [J].
Bonnick, Patrick ;
Muldoon, John .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :1840-1860
[10]   Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface [J].
Brogioli, Doriano ;
Langer, Frederieke ;
Kun, Robert ;
La Mantia, Fabio .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :11999-12007