Host Genetic Factors, Comorbidities and the Risk of Severe COVID-19

被引:13
作者
Zhu, Dongliang [1 ]
Zhao, Renjia [3 ]
Yuan, Huangbo [3 ]
Xie, Yijing [1 ]
Jiang, Yanfeng [3 ,4 ]
Xu, Kelin [4 ,5 ]
Zhang, Tiejun [1 ,2 ,4 ]
Chen, Xingdong [3 ,4 ,6 ,7 ]
Suo, Chen [1 ,2 ,4 ]
机构
[1] Fudan Univ, Sch Publ Hlth, Dept Epidemiol, Minist Educ,Key Lab Publ Hlth Safety, Shanghai, Peoples R China
[2] Shanghai Inst Infect Dis & Biosecur, Shanghai, Peoples R China
[3] Fudan Univ, Human Phenome Inst, Zhangjiang Fudan Int Innovat Ctr, State Key Lab Genet Engn, Shanghai, Peoples R China
[4] Fudan Univ, Taizhou Inst Hlth Sci, Yaocheng Rd 799, Taizhou, Jiangsu, Peoples R China
[5] Fudan Univ, Sch Publ Hlth, Dept Biostat, Shanghai, Peoples R China
[6] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai 200040, Peoples R China
[7] Fudan Univ, Yiwu Res Inst, Yiwu, Zhejiang, Peoples R China
关键词
COVID-19; GWAS; Host genetics; Comorbidity; Polygenic risk score; Predictive model; RECEPTOR; SPIKE;
D O I
10.1007/s44197-023-00106-3
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
BackgroundCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was varied in disease symptoms. We aim to explore the effect of host genetic factors and comorbidities on severe COVID-19 risk.MethodsA total of 20,320 COVID-19 patients in the UK Biobank cohort were included. Genome-wide association analysis (GWAS) was used to identify host genetic factors in the progression of COVID-19 and a polygenic risk score (PRS) consisted of 86 SNPs was constructed to summarize genetic susceptibility. Colocalization analysis and Logistic regression model were used to assess the association of host genetic factors and comorbidities with COVID-19 severity. All cases were randomly split into training and validation set (1:1). Four algorithms were used to develop predictive models and predict COVID-19 severity. Demographic characteristics, comorbidities and PRS were included in the model to predict the risk of severe COVID-19. The area under the receiver operating characteristic curve (AUROC) was applied to assess the models' performance.ResultsWe detected an association with rs73064425 at locus 3p21.31 reached the genome-wide level in GWAS (odds ratio: 1.55, 95% confidence interval: 1.36-1.78). Colocalization analysis found that two genes (SLC6A20 and LZTFL1) may affect the progression of COVID-19. In the predictive model, logistic regression models were selected due to simplicity and high performance. Predictive model consisting of demographic characteristics, comorbidities and genetic factors could precisely predict the patient's progression (AUROC = 82.1%, 95% CI 80.6-83.7%). Nearly 20% of severe COVID-19 events could be attributed to genetic risk.ConclusionIn this study, we identified two 3p21.31 genes as genetic susceptibility loci in patients with severe COVID-19. The predictive model includes demographic characteristics, comorbidities and genetic factors is useful to identify individuals who are predisposed to develop subsequent critical conditions among COVID-19 patients.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 55 条
[31]   Structure of SARS coronavirus spike receptor-binding domain complexed with receptor [J].
Li, F ;
Li, WH ;
Farzan, M ;
Harrison, SC .
SCIENCE, 2005, 309 (5742) :1864-1868
[32]   Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 [J].
Li, WH ;
Zhang, CS ;
Sui, JH ;
Kuhn, JH ;
Moore, MJ ;
Luo, SW ;
Wong, SK ;
Huang, IC ;
Xu, KM ;
Vasilieva, N ;
Murakami, A ;
He, YQ ;
Marasco, WA ;
Guan, Y ;
Choe, HY ;
Farzan, M .
EMBO JOURNAL, 2005, 24 (08) :1634-1643
[33]   STATISTICS NOTES Population attributable fraction [J].
Mansournia, Mohammad Ali ;
Altman, Douglas G. .
BMJ-BRITISH MEDICAL JOURNAL, 2018, 360
[34]   Management of COVID-19 Respiratory Distress [J].
Marini, John J. ;
Gattinoni, Luciano .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (22) :2329-2330
[35]   Variable prediction accuracy of polygenic scores within an ancestry group [J].
Mostafavi, Hakhamanesh ;
Harpak, Arbel ;
Agarwal, Ipsita ;
Conley, Dalton ;
Pritchard, Jonathan K. ;
Przeworski, Molly .
ELIFE, 2020, 9
[36]   Mapping the human genetic architecture of COVID-19 [J].
Niemi, Mari E. K. ;
Karjalainen, Juha ;
Daly, Mark ;
Ganna, Andrea ;
Mehtonen, Juha ;
Cordioli, Mattia ;
Kaunisto, Mari ;
Pigazzini, Sara ;
Donner, Kati ;
Kivinen, Katja ;
Palotie, Aarno ;
Daly, Mark J. ;
Liao, Rachel G. ;
Kanai, Masahiro ;
Veerapen, Kumar ;
Minica, Camelia ;
Trankiem, Amy ;
Balaconis, Mary K. ;
Nguyen, Huy ;
Solomonson, Matthew ;
Francioli, Laurent ;
Wang, Qingbo ;
Green, Robert C. ;
Bryant, Sam ;
Finucane, Hilary ;
Martin, Alicia R. ;
Zhou, Wei ;
Nkambule, Lindokuhle ;
Karczewski, Konrad J. ;
Atkinson, Elizabeth G. ;
Tsuo, Kristin ;
Baya, Nikolas ;
Turley, Patrick ;
Gupta, Rahul ;
Walters, Raymond K. ;
Palmer, Duncan S. ;
Sarma, Gopal ;
Cheng, Nathan ;
Lu, Wenhan ;
Churchhouse, Claire ;
Goldstein, Jacqueline, I ;
King, Daniel ;
Seed, Cotton ;
Neale, Benjamin M. ;
Satterstrom, F. Kyle ;
Pathak, Gita A. ;
Wendt, Frank R. ;
Polimanti, Renato ;
Andrews, Shea J. ;
Sloofman, Laura .
NATURE, 2021, 600 (7889) :472-+
[37]   Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy [J].
Onder, Graziano ;
Rezza, Giovanni ;
Brusaferro, Silvio .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (18) :1775-1776
[38]   Genetic mechanisms of critical illness in COVID-19 [J].
Pairo-Castineira, Erola ;
Clohisey, Sara ;
Klaric, Lucija ;
Bretherick, Andrew D. ;
Rawlik, Konrad ;
Pasko, Dorota ;
Walker, Susan ;
Parkinson, Nick ;
Fourman, Max Head ;
Russell, Clark D. ;
Furniss, James ;
Richmond, Anne ;
Gountouna, Elvina ;
Wrobel, Nicola ;
Harrison, David ;
Wang, Bo ;
Wu, Yang ;
Meynert, Alison ;
Griffiths, Fiona ;
Oosthuyzen, Wilna ;
Kousathanas, Athanasios ;
Moutsianas, Loukas ;
Yang, Zhijian ;
Zhai, Ranran ;
Zheng, Chenqing ;
Grimes, Graeme ;
Beale, Rupert ;
Millar, Jonathan ;
Shih, Barbara ;
Keating, Sean ;
Zechner, Marie ;
Haley, Chris ;
Porteous, David J. ;
Hayward, Caroline ;
Yang, Jian ;
Knight, Julian ;
Summers, Charlotte ;
Shankar-Hari, Manu ;
Klenerman, Paul ;
Turtle, Lance ;
Ho, Antonia ;
Moore, Shona C. ;
Hinds, Charles ;
Horby, Peter ;
Nichol, Alistair ;
Maslove, David ;
Ling, Lowell ;
McAuley, Danny ;
Montgomery, Hugh ;
Walsh, Timothy .
NATURE, 2021, 591 (7848) :92-+
[39]   Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies [J].
Pijls, Bart G. ;
Jolani, Shahab ;
Atherley, Anique ;
Derckx, Raissa T. ;
Dijkstra, Janna I. R. ;
Franssen, Gregor H. L. ;
Hendriks, Stevie ;
Richters, Anke ;
Venemans-Jellema, Annemarie ;
Zalpuri, Saurabh ;
Zeegers, Maurice P. .
BMJ OPEN, 2021, 11 (01)
[40]   Host genetic loci LZTFL1 and CCL2 associated with SARS-CoV-2 infection and severity of COVID-19 [J].
Rueter, Jule ;
Pallerla, Srinivas Reddy ;
Meyer, Christian G. ;
Casadei, Nicolas ;
Sonnabend, Michael ;
Peter, Silke ;
Nurjadi, Dennis ;
Le Thi Kieu Linh ;
Fendel, Rolf ;
Goepel, Siri ;
Riess, Olaf ;
Kremsner, Peter G. ;
Velavan, Thirumalaisamy P. .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 122 :427-436