Host Genetic Factors, Comorbidities and the Risk of Severe COVID-19

被引:13
作者
Zhu, Dongliang [1 ]
Zhao, Renjia [3 ]
Yuan, Huangbo [3 ]
Xie, Yijing [1 ]
Jiang, Yanfeng [3 ,4 ]
Xu, Kelin [4 ,5 ]
Zhang, Tiejun [1 ,2 ,4 ]
Chen, Xingdong [3 ,4 ,6 ,7 ]
Suo, Chen [1 ,2 ,4 ]
机构
[1] Fudan Univ, Sch Publ Hlth, Dept Epidemiol, Minist Educ,Key Lab Publ Hlth Safety, Shanghai, Peoples R China
[2] Shanghai Inst Infect Dis & Biosecur, Shanghai, Peoples R China
[3] Fudan Univ, Human Phenome Inst, Zhangjiang Fudan Int Innovat Ctr, State Key Lab Genet Engn, Shanghai, Peoples R China
[4] Fudan Univ, Taizhou Inst Hlth Sci, Yaocheng Rd 799, Taizhou, Jiangsu, Peoples R China
[5] Fudan Univ, Sch Publ Hlth, Dept Biostat, Shanghai, Peoples R China
[6] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai 200040, Peoples R China
[7] Fudan Univ, Yiwu Res Inst, Yiwu, Zhejiang, Peoples R China
关键词
COVID-19; GWAS; Host genetics; Comorbidity; Polygenic risk score; Predictive model; RECEPTOR; SPIKE;
D O I
10.1007/s44197-023-00106-3
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
BackgroundCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was varied in disease symptoms. We aim to explore the effect of host genetic factors and comorbidities on severe COVID-19 risk.MethodsA total of 20,320 COVID-19 patients in the UK Biobank cohort were included. Genome-wide association analysis (GWAS) was used to identify host genetic factors in the progression of COVID-19 and a polygenic risk score (PRS) consisted of 86 SNPs was constructed to summarize genetic susceptibility. Colocalization analysis and Logistic regression model were used to assess the association of host genetic factors and comorbidities with COVID-19 severity. All cases were randomly split into training and validation set (1:1). Four algorithms were used to develop predictive models and predict COVID-19 severity. Demographic characteristics, comorbidities and PRS were included in the model to predict the risk of severe COVID-19. The area under the receiver operating characteristic curve (AUROC) was applied to assess the models' performance.ResultsWe detected an association with rs73064425 at locus 3p21.31 reached the genome-wide level in GWAS (odds ratio: 1.55, 95% confidence interval: 1.36-1.78). Colocalization analysis found that two genes (SLC6A20 and LZTFL1) may affect the progression of COVID-19. In the predictive model, logistic regression models were selected due to simplicity and high performance. Predictive model consisting of demographic characteristics, comorbidities and genetic factors could precisely predict the patient's progression (AUROC = 82.1%, 95% CI 80.6-83.7%). Nearly 20% of severe COVID-19 events could be attributed to genetic risk.ConclusionIn this study, we identified two 3p21.31 genes as genetic susceptibility loci in patients with severe COVID-19. The predictive model includes demographic characteristics, comorbidities and genetic factors is useful to identify individuals who are predisposed to develop subsequent critical conditions among COVID-19 patients.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 55 条
[1]   The GTEx Consortium atlas of genetic regulatory effects across human tissues [J].
Aguet, Francois ;
Barbeira, Alvaro N. ;
Bonazzola, Rodrigo ;
Brown, Andrew ;
Castel, Stephane E. ;
Jo, Brian ;
Kasela, Silva ;
Kim-Hellmuth, Sarah ;
Liang, Yanyu ;
Parsana, Princy ;
Flynn, Elise ;
Fresard, Laure ;
Gamazon, Eric R. ;
Hamel, Andrew R. ;
He, Yuan ;
Hormozdiari, Farhad ;
Mohammadi, Pejman ;
Munoz-Aguirre, Manuel ;
Ardlie, Kristin G. ;
Battle, Alexis ;
Bonazzola, Rodrigo ;
Brown, Christopher D. ;
Cox, Nancy ;
Dermitzakis, Emmanouil T. ;
Engelhardt, Barbara E. ;
Garrido-Martin, Diego ;
Gay, Nicole R. ;
Getz, Gad ;
Guigo, Roderic ;
Hamel, Andrew R. ;
Handsaker, Robert E. ;
He, Yuan ;
Hoffman, Paul J. ;
Hormozdiari, Farhad ;
Im, Hae Kyung ;
Jo, Brian ;
Kasela, Silva ;
Kashin, Seva ;
Kim-Hellmuth, Sarah ;
Kwong, Alan ;
Lappalainen, Tuuli ;
Li, Xiao ;
Liang, Yanyu ;
MacArthur, Daniel G. ;
Mohammadi, Pejman ;
Montgomery, Stephen B. ;
Munoz-Aguirre, Manuel ;
Rouhana, John M. ;
Hormozdiari, Farhad ;
Im, Hae Kyung .
SCIENCE, 2020, 369 (6509) :1318-1330
[2]   Peripheral Nervous System Manifestations Associated with COVID-19 [J].
Andalib, Sasan ;
Biller, Jose ;
Di Napoli, Mario ;
Moghimi, Narges ;
McCullough, Louise D. ;
Rubinos, Clio A. ;
O'Hana Nobleza, Christa ;
Azarpazhooh, M. Reza ;
Catanese, Luciana ;
Elicer, Isabel ;
Jafari, Mostafa ;
Liberati, Fabrizio ;
Camejo, Claudia ;
Torbey, Michel ;
Divani, Afshin A. .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2021, 21 (03)
[3]  
[Anonymous], 2022, WHO CORONAVIRUS COVI
[4]   Severe Covid-19 [J].
Berlin, David A. ;
Gulick, Roy M. ;
Martinez, Fernando J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (25) :2451-2460
[5]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[6]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[7]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[8]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[9]   Genetic predispositions to psychiatric disorders and the risk of COVID-19 [J].
Chen, Wenwen ;
Zeng, Yu ;
Suo, Chen ;
Yang, Huazhen ;
Chen, Yilong ;
Hou, Can ;
Hu, Yao ;
Ying, Zhiye ;
Sun, Yajing ;
Qu, Yuanyuan ;
Lu, Donghao ;
Fang, Fang ;
Valdimarsdottir, Unnur A. ;
Song, Huan .
BMC MEDICINE, 2022, 20 (01)
[10]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)