Buried graphene heterostructures for electrostatic doping of low-dimensional materials

被引:1
|
作者
Gumprich, A. [1 ]
Liedtke, J. [1 ]
Beck, S. [1 ]
Chirca, I [2 ]
Potocnik, T. [2 ]
Alexander-Webber, J. A. [2 ]
Hofmann, S. [2 ]
Tappertzhofen, S. [1 ]
机构
[1] TU Dortmund Univ, Chair Micro & Nanoelect, Dept Elect Engn & Informat Technol, Martin Schmeisser Weg 4-6, D-44227 Dortmund, Germany
[2] Univ Cambridge, Dept Engn, 9 JJ Thompson Ave, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
low-dimensional materials; graphene-heterostructures; electrostatic doping; buried triple gates; steep slope transistors; carbon nanotube transistors; FIELD-EFFECT TRANSISTORS; CARBON; PERFORMANCE; FETS; DEPOSITION; IMPACT;
D O I
10.1088/1361-6528/acbaa2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The fabrication and characterization of steep slope transistor devices based on low-dimensional materials requires precise electrostatic doping profiles with steep spatial gradients in order to maintain maximum control over the channel. In this proof-of-concept study we present a versatile graphene heterostructure platform with three buried individually addressable gate electrodes. The platform is based on a vertical stack of embedded titanium and graphene separated by an intermediate oxide to provide an almost planar surface. We demonstrate the functionality and advantages of the platform by exploring transfer and output characteristics at different temperatures of carbon nanotube field-effect transistors with different electrostatic doping configurations. Furthermore, we back up the concept with finite element simulations to investigate the surface potential. The presented heterostructure is an ideal platform for analysis of electrostatic doping of low-dimensional materials for novel low-power transistor devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Heat transport in low-dimensional materials: A review and perspective
    Xu, Zhiping
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2016, 6 (03) : 113 - 121
  • [22] Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers
    Fu, Yifeng
    Cui, Guofeng
    Jeppson, Kjell
    MATERIALS, 2019, 12 (11)
  • [23] Propagation of surface plasmons along low-dimensional materials
    Kang, Ji-Hun
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XXII, 2018, 10530
  • [24] Piezoelectric Applications of Low-Dimensional Composites and Porous Materials
    Luo, Xiaoqiang
    Li, Qingbin
    Wang, Yichao
    MATERIALS, 2024, 17 (04)
  • [25] The Origin of Quantum Effects in Low-Dimensional Thermoelectric Materials
    Hung, Nguyen T.
    Saito, Riichiro
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (01)
  • [26] An intellectual property analysis: advances and commercialization of low-dimensional carbon materials in batteries
    Su, Chang
    Gao, Xuan
    Liu, Kejiang
    Wang, Shudi
    Dai, Yuhang
    Dong, Haobo
    Liu, Yiyang
    Zhu, Jiayan
    Zhang, Qiuxia
    He, Guanjie
    ENERGY MATERIALS, 2024, 4 (04):
  • [27] Graphitic Carbon Nitride-Based Low-Dimensional Heterostructures for Photocatalytic Applications
    Khan, Muhammad Shuaib
    Zhang, Fengkai
    Osada, Minoru
    Mao, Samuel S.
    Shen, Shaohua
    SOLAR RRL, 2020, 4 (08)
  • [28] Optical Second Harmonic Generation of Low-Dimensional Semiconductor Materials
    Fu, Yue
    Liu, Zhengyan
    Yue, Song
    Zhang, Kunpeng
    Wang, Ran
    Zhang, Zichen
    NANOMATERIALS, 2024, 14 (08)
  • [29] Research Progress of Neuromorphic Devices Based on Low-dimensional Materials
    Liu Y.
    Wan J.
    Qiu C.
    Zhao J.
    Wang H.
    Faguang Xuebao/Chinese Journal of Luminescence, 2023, 44 (06): : 1085 - 1111
  • [30] Emerging low-dimensional materials for mid-infrared detection
    Wu, Jiangbin
    Wang, Nan
    Yan, Xiaodong
    Wang, Han
    NANO RESEARCH, 2021, 14 (06) : 1863 - 1877