Non-Markovian process with variable memory functions

被引:0
|
作者
Chanu, Athokpam Langlen [1 ]
Bhadana, Jyoti [1 ]
Brojen Singh, R. K. [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi 110067, India
关键词
Kolmogorov-Feller equation; Mittag-Leffler function; Stochastic process; Non-Markov; Memory; FRACTIONAL CALCULUS; EVOLUTION; EQUATION;
D O I
10.1007/s11587-021-00586-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a treatment of the non-Markovian character of memory by incorporating different forms of Mittag-Leffler (ML) function, which generally arises in the solution of a fractional master equation, as different memory functions in the Generalized Kolmogorov-Feller Equation (GKFE). The cross-over from the short time (stretched exponential) to long time (inverse power law) approximations of the ML function incorporated in the GKFE is proven. We have found that the GKFE solutions are the same for negative exponential and upto first order expansion of the stretched exponential function for very small tau -> 0. A generalized integro-differential equation form of the GKFE along with an asymptotic case is provided.
引用
收藏
页码:835 / 851
页数:17
相关论文
共 50 条
  • [1] Non-Markovian process with variable memory functions
    Athokpam Langlen Chanu
    Jyoti Bhadana
    R. K. Brojen Singh
    Ricerche di Matematica, 2023, 72 : 835 - 851
  • [2] Non-Markovian memory strength bounds quantum process recoverability
    Philip Taranto
    Felix A. Pollock
    Kavan Modi
    npj Quantum Information, 7
  • [3] Non-Markovian memory strength bounds quantum process recoverability
    Taranto, Philip
    Pollock, Felix A.
    Modi, Kavan
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [4] METHODS FOR NON-MARKOVIAN PROCESS
    HARA, H
    PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (01): : 296 - 299
  • [5] On Reinforcement Memory for Non-Markovian Control
    Osman, Hassab Elgawi
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVII: INCORPORATING APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVIII, 2011, : 179 - 192
  • [6] Quasihydrodynamic approximation for memory functions in non-Markovian relaxation processes in condensed matter
    Yulmetyev, RM
    Shurygin, VY
    Yulmetyev, TR
    PHYSICA A, 1997, 242 (3-4): : 509 - 521
  • [7] Non-Markovian Quantum Process Tomography
    White, G. A. L.
    Pollock, F. A.
    Hollenberg, L. C. L.
    Modi, K.
    Hill, C. D.
    PRX QUANTUM, 2022, 3 (02):
  • [8] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [9] MEMORY FOR REWARD IN PROBABILISTIC CHOICE - MARKOVIAN AND NON-MARKOVIAN PROPERTIES
    DAVIS, DGS
    STADDON, JER
    BEHAVIOUR, 1990, 114 : 37 - 64
  • [10] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900