Tensor generalized canonical correlation analysis

被引:1
作者
Girka, Fabien [1 ,2 ]
Gloaguen, Arnaud [3 ]
Le Brusquet, Laurent [1 ]
Zujovic, Violetta [2 ]
Tenenhaus, Arthur [1 ,2 ]
机构
[1] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, F-91190 Gi Sur Yvette, France
[2] Sorbonne Univ, Hop Pitie Salpetriere, AP HP, Inst Cerveau,Paris Brain Inst,ICM,Inserm,CNRS,Univ, Paris, France
[3] Univ Paris Saclay, Inst Francois Jacob, Ctr Natl Rech Genom Humaine, CEA, F-91057 Evry, France
关键词
Canonical correlation analysis; Multiblock data analysis; Tensor analysis; CANDECOMP/PARAFAC decomposition; Block coordinate ascent; SETS; DECOMPOSITIONS; FUSION;
D O I
10.1016/j.inffus.2023.102045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularized Generalized Canonical Correlation Analysis (RGCCA) is a general statistical framework for multiblock data analysis. RGCCA enables deciphering relationships between several sets of variables and subsumes many well-known multivariate analysis methods as special cases. However, RGCCA only deals with vector-valued blocks, disregarding their possible higher-order structures. This paper presents Tensor GCCA (TGCCA), a new method for analyzing higher-order tensors with canonical vectors admitting an orthogonal rank-R CP decomposition. Moreover, two algorithms for TGCCA, based on whether a separable covariance structure is imposed or not, are presented along with convergence guarantees. The efficiency and usefulness of TGCCA are evaluated on simulated and real data and compared favorably to state-of-the-art approaches.
引用
收藏
页数:26
相关论文
共 52 条
  • [1] Acar E, 2014, EUR SIGNAL PR CONF, P111
  • [2] Structure-revealing data fusion
    Acar, Evrim
    Papalexakis, Evangelos E.
    Gurdeniz, Gozde
    Rasmussen, Morten A.
    Lawaetz, Anders J.
    Nilsson, Mathias
    Bro, Rasmus
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [3] [Anonymous], 2012, Data Fusion: Concepts and Ideas, DOI [10.1007/978-3-642-27222-6, DOI 10.1007/978-3-642-27222-6]
  • [4] [Anonymous], 2011, All-at-once optimization for coupled matrix and tensor factorizations
  • [5] Barthelme S., 2019, J OPEN SOURCE SOFTW, V4, P1012, DOI DOI 10.21105/JOSS.01012
  • [6] Data fusion methodologies for food and beverage authentication and quality assessment - A review
    Borras, Eva
    Ferre, Joan
    Boque, Ricard
    Mestres, Montserrat
    Acena, Laura
    Busto, Olga
    [J]. ANALYTICA CHIMICA ACTA, 2015, 891 : 1 - 14
  • [7] ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION
    CARROLL, JD
    CHANG, JJ
    [J]. PSYCHOMETRIKA, 1970, 35 (03) : 283 - &
  • [8] Carroll JD., 1968, P AM PSYCHOL ASS, P227, DOI DOI 10.1037/E473742008-115
  • [9] Tensor Canonical Correlation Analysis With Convergence and Statistical Guarantees
    Chen, You-Lin
    Kolar, Mladen
    Tsay, Ruey S.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (03) : 728 - 744
  • [10] Chessel D., 1996, REV STAT APPL, V44, P35