Artificial Intelligence and Machine Learning in Rotator Cuff Tears

被引:4
作者
Rodriguez, Hugo C. [1 ,2 ]
Rust, Brandon [3 ]
Hansen, Payton Yerke [4 ]
Maffulli, Nicola [5 ,6 ,7 ,8 ]
Gupta, Manu [9 ]
Potty, Anish G. [11 ]
Gupta, Ashim [10 ,11 ,12 ,13 ,14 ]
机构
[1] Larkin Community Hosp, Dept Orthopaed Surg, South Miami, FL USA
[2] Hosp Special Surg Florida, Dept Orthopaed Surg, W Palm Beach, FL USA
[3] Nova Southeastern Univ, Dr Kiran Patel Coll Osteopath Med, Ft Lauderdale, FL USA
[4] Florida Atlantic Univ, Charles E Schmidt Coll Med, Boca Raton, FL USA
[5] Univ Salerno, Sch Med & Surg, Dept Musculoskeletal Disorders, Fisciano, Italy
[6] San Giovanni Dio & Ruggi Aragona Hosp, Hosp Salerno, Clin Ortoped Dept, I-84124 Salerno, Italy
[7] Queen Mary Univ London, Ctr Sports & Exercise Med, Barts & London Sch Med & Dent, London, England
[8] Keele Univ, Sch Pharm & Bioengn, Sch Med, Stoke On Trent, England
[9] Polar Aesthet Dent & Cosmet Ctr, Noida, Uttar Pradesh, India
[10] Regenerat Orthopaed, Noida, India
[11] STORI Inc, South Texas Orthopaed Res Inst, Laredo, TX USA
[12] Future Biol, Richmond, CA USA
[13] BioIntegrate, Lawrenceville, GA USA
[14] DABRM, FABRM, Future Biol, Lawrenceville, GA 30043 USA
关键词
rotator cuff tears; shoulder pathology; artificial intelligence; machine learning; deep learning; convoluted neural networks; predictive modeling; medical decision-making;
D O I
10.1097/JSA.0000000000000371
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
Rotator cuff tears (RCTs) negatively impacts patient well-being. Artificial intelligence (AI) is emerging as a promising tool in medical decision-making. Within AI, deep learning allows to autonomously solve complex tasks. This review assesses the current and potential applications of AI in the management of RCT, focusing on diagnostic utility, challenges, and future perspectives. AI demonstrates promise in RCT diagnosis, aiding clinicians in interpreting complex imaging data. Deep learning frameworks, particularly convoluted neural networks architectures, exhibit remarkable diagnostic accuracy in detecting RCTs on magnetic resonance imaging. Advanced segmentation algorithms improve anatomic visualization and surgical planning. AI-assisted radiograph interpretation proves effective in ruling out full-thickness tears. Machine learning models predict RCT diagnosis and postoperative outcomes, enhancing personalized patient care. Challenges include small data sets and classification complexities, especially for partial thickness tears. Current applications of AI in RCT management are promising yet experimental. The potential of AI to revolutionize personalized, efficient, and accurate care for RCT patients is evident. The integration of AI with clinical expertise holds potential to redefine treatment strategies and optimize patient outcomes. Further research, larger data sets, and collaborative efforts are essential to unlock the transformative impact of AI in orthopedic surgery and RCT management.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 35 条
[1]   Developing a machine learning algorithm to predict probability of retear and functional outcomes in patients undergoing rotator cuff repair surgery: protocol for a retrospective, multicentre study [J].
Allaart, Laurens J. H. ;
van Spanning, Sanne ;
Lafosse, Laurent ;
Lafosse, Thibault ;
Ladermann, Alexandre ;
Athwal, George S. ;
Hendrickx, Laurent A. M. ;
Doornberg, Job N. ;
van den Bekerom, Michel P. J. ;
Buijze, Geert Alexander ;
Machine Learning Consortium .
BMJ OPEN, 2023, 13 (02)
[2]   Evaluation of at- home physiotherapy MACHINE- LEARNING PREDICTION WITH SMART WATCH INERTIAL SENSORS [J].
Boyer, P. ;
Burns, D. ;
Whyne, C. .
BONE & JOINT RESEARCH, 2023, 12 (03) :165-177
[3]   Automated detection and classification of the proximal humerus fracture by using deep learning algorithm [J].
Chung, Seok Won ;
Han, Seung Seog ;
Lee, Ji Whan ;
Oh, Kyung-Soo ;
Kim, Na Ra ;
Yoon, Jong Pil ;
Kim, Joon Yub ;
Moon, Sung Hoon ;
Kwon, Jieun ;
Lee, Hyo-Jin ;
Noh, Young-Min ;
Kim, Youngjun .
ACTA ORTHOPAEDICA, 2018, 89 (04) :468-473
[4]   Guidelines for Artificial Intelligence in Medicine: Literature Review and Content Analysis of Frameworks [J].
Crossnohere, Norah L. ;
Elsaid, Mohamed ;
Paskett, Jonathan ;
Bose-Brill, Seuli ;
Bridges, John F. P. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (08)
[5]   Scoring metrics for assessing skills in arthroscopic rotator cuff repair: performance comparison study of novice and expert surgeons [J].
Demirel, Doga ;
Palmer, Bryce ;
Sundberg, Gunnar ;
Karaman, Bayazit ;
Halic, Tansel ;
Kockara, Sinan ;
Kockara, Nizamettin ;
Rogers, Mark Edward ;
Ahmadi, Shahryar .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (10) :1823-1835
[6]   Coracoid Impingement and Morphology Is Associated with Fatty Infiltration and Rotator Cuff Tears [J].
El-Amin, Saadiq F., III ;
Maffulli, Nicola ;
Mai, Matthew C. ;
Rodriguez, Hugo C. ;
Jaso, Victoria ;
Cannon, Dylan ;
Gupta, Ashim .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (09)
[7]   Detection of the rotator cuff tears using a novel convolutional neural network from magnetic resonance image (MRI) [J].
Esfandiari, Mohammad Amin ;
Tafti, Mohammad Fallah ;
Dabanloo, Nader Jafarnia ;
Yousefirizi, Fereshteh .
HELIYON, 2023, 9 (05)
[8]   Artificial Intelligence in the Management of Rotator Cuff Tears [J].
Familiari, Filippo ;
Galasso, Olimpio ;
Massazza, Federica ;
Mercurio, Michele ;
Fox, Henry ;
Srikumaran, Uma ;
Gasparini, Giorgio .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (24)
[9]   Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain [J].
Feuerriegel, Georg C. ;
Weiss, Kilian ;
Kronthaler, Sophia ;
Leonhardt, Yannik ;
Neumann, Jan ;
Wurm, Markus ;
Lenhart, Nicolas S. ;
Makowski, Marcus R. ;
Schwaiger, Benedikt J. ;
Woertler, Klaus ;
Karampinos, Dimitrios C. ;
Gersing, Alexandra S. .
EUROPEAN RADIOLOGY, 2023, 33 (07) :4875-4884
[10]   Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology An Overview of Novel MRI- and CT-Based Approaches [J].
Fritz, Benjamin ;
Yi, Paul H. H. ;
Kijowski, Richard ;
Fritz, Jan .
INVESTIGATIVE RADIOLOGY, 2023, 58 (01) :3-13