Inductive Transfer and Deep Neural Network Learning-Based Cross-Model Method for Short-Term Load Forecasting in Smarts Grids

被引:6
|
作者
Syed, Dabeeruddin [1 ,2 ]
Zainab, Ameema [1 ]
Refaat, Shady S. [2 ]
Abu-Rub, Haitham [2 ]
Bouhali, Othmane [3 ,4 ]
Ghrayeb, Ali [2 ]
Houchati, Mahdi [5 ]
Banales, Santiago
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
[3] Texas A&M Univ Qatar, Res Comp, Doha, Qatar
[4] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Doha, Qatar
[5] Iberdrola Innovat Middle East, Doha, Qatar
来源
IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING | 2023年 / 46卷 / 02期
关键词
Predictive models; Load modeling; Forecasting; Data models; Energy consumption; Load forecasting; Training; Clustering models; inductive transfer learning (ITL); load forecasting; predictive models; smart grids; REGRESSION;
D O I
10.1109/ICJECE.2023.3253547
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In a real-world scenario of load forecasting, it is crucial to determine the energy consumption in electrical networks. The energy consumption data exhibit high variability between historical data and newly arriving data streams. To keep the forecasting models updated with the current trends, it is important to fine-tune the models in a timely manner. This article proposes a reliable inductive transfer learning (ITL) method, to use the knowledge from existing deep learning (DL) load forecasting models, to innovatively develop highly accurate ITL models at a large number of other distribution nodes reducing model training time. The outlier-insensitive clustering-based technique is adopted to group similar distribution nodes into clusters. ITL is considered in the setting of homogeneous inductive transfer. To solve overfitting that exists with ITL, a novel weight regularized optimization approach is implemented. The proposed novel cross-model methodology is evaluated on a real-world case study of 1000 distribution nodes of an electrical grid for one-day ahead hourly forecasting. Experimental results demonstrate that overfitting and negative learning in ITL can be avoided by the dissociated weight regularization (DWR) optimizer and that the proposed methodology delivers a reduction in training time by almost 85.6% and has no noticeable accuracy losses.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 50 条
  • [1] Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid With Clustering and Consumption Pattern Recognition
    Syed, Dabeeruddin
    Abu-Rub, Haitham
    Ghrayeb, Ali
    Refaat, Shady S.
    Houchati, Mahdi
    Bouhali, Othmane
    Banales, Santiago
    IEEE ACCESS, 2021, 9 : 54992 - 55008
  • [2] Short-Term Load Forecasting in Smart Grids Using Hybrid Deep Learning
    Asiri, Mashael M.
    Aldehim, Ghadah
    Alotaibi, Faiz Abdullah
    Alnfiai, Mrim M.
    Assiri, Mohammed
    Mahmud, Ahmed
    IEEE ACCESS, 2024, 12 : 23504 - 23513
  • [3] Two-Layer Transfer-Learning-Based Architecture for Short-Term Load Forecasting
    Cai, Long
    Gu, Jie
    Jin, Zhijian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (03) : 1722 - 1732
  • [4] Hierarchical Multiobjective Distributed Deep Learning for Residential Short-Term Electric Load Forecasting
    Sakuma, Yuiko
    Nishi, Hiroaki
    IEEE ACCESS, 2022, 10 : 69950 - 69962
  • [5] Short-Term Power Load Forecasting Based on Cross Multi-Model and Second Decision Mechanism
    Zeng, Pan
    Jin, Min
    Elahe, Md. Fazla
    IEEE ACCESS, 2020, 8 : 184061 - 184072
  • [6] Application of Bidirectional Recurrent Neural Network Combined With Deep Belief Network in Short-Term Load Forecasting
    Tang, Xianlun
    Dai, Yuyan
    Liu, Qing
    Dang, Xiaoyuan
    Xu, Jin
    IEEE ACCESS, 2019, 7 : 160660 - 160670
  • [7] On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach
    Farsi, Behnam
    Amayri, Manar
    Bouguila, Nizar
    Eicker, Ursula
    IEEE ACCESS, 2021, 9 : 31191 - 31212
  • [8] Multiple Wavelet Convolutional Neural Network for Short-Term Load Forecasting
    Liao, Zhifang
    Pan, Haihui
    Fan, Xiaoping
    Zhang, Yan
    Kuang, Li
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9730 - 9739
  • [9] Short-Term Load Forecasting with Neural Network Ensembles: A Comparative Study
    De Felice, Matteo
    Yao, Xin
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2011, 6 (03) : 47 - 56
  • [10] A Short-Term Load Forecasting Model Based on Self-Adaptive Momentum Factor and Wavelet Neural Network in Smart Grid
    Zulfiqar, Muhammad
    Kamran, Muhammad
    Babar Rasheed, Muhammad
    Alquthami, Thamer
    Milyani, Ahmad H.
    IEEE ACCESS, 2022, 10 : 77587 - 77602