Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses

被引:11
作者
Goegele, Clemens [1 ]
Hahn, Judith [2 ]
Schulze-Tanzil, Gundula [1 ]
机构
[1] Paracelsus Med Univ, Inst Anat & Cell Biol, Prof Ernst Nathan Str 1, D-90419 Nurnberg, Germany
[2] Leibniz Inst Polymerforsch Dresden eV IPF, Workgrp Bioengn, Inst Polymers Mat, Dept Mat Engn, Hohe Str 6, D-01069 Dresden, Germany
关键词
ACL; enthesis; ligament; synovioentheseal complex knee; tissue engineering; triphasic and graded scaffold; fibrocartilage; bone-ligament interface; zonality; tidemark; FINITE-ELEMENT-ANALYSIS; TENDON-BONE INTERFACE; GROWTH-FACTOR; REGENERATION; SCAFFOLDS; FIBROCARTILAGE; INSERTION; CELLS; GRAFT; BIOMATERIALS;
D O I
10.3390/ijms24119745
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Tissue engineering of the anterior cruciate ligament: a new method using acellularized tendon allografts and autologous fibroblasts
    Thomas Tischer
    Stephan Vogt
    Sebastian Aryee
    Erwin Steinhauser
    Christopher Adamczyk
    Stefan Milz
    Vladimir Martinek
    Andreas B. Imhoff
    Archives of Orthopaedic and Trauma Surgery, 2007, 127 : 735 - 741
  • [32] Tissue engineering of the anterior cruciate ligament: a new method using acellularized tendon allografts and autologous fibroblasts
    Tischer, Thomas
    Vogt, Stephan
    Aryee, Sebastian
    Steinhauser, Erwin
    Adamczyk, Christopher
    Milz, Stefan
    Martinek, Vladimir
    Imhov, Andreas B.
    ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 2007, 127 (09) : 735 - 741
  • [33] Collagen Fibril Diameter Distribution of Sheep Anterior Cruciate Ligament
    Smatov, Smail
    Mukasheva, Fariza
    Erisken, Cevat
    POLYMERS, 2023, 15 (03)
  • [34] The "Footprint" Anterior Cruciate Ligament Technique: An Anatomic Approach to Anterior Cruciate Ligament Reconstruction
    Bedi, Asheesh
    Altchek, David W.
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2009, 25 (10) : 1128 - 1138
  • [35] Anterior Cruciate Ligament Reconstruction Using Chitin-coated Fabrics in a Rabbit Model
    Kawai, Tomoyuki
    Yamada, Takeki
    Yasukawa, Akio
    Koyama, Yoshihisa
    Muneta, Takeshi
    Takakuda, Kazuo
    ARTIFICIAL ORGANS, 2010, 34 (01) : 55 - 64
  • [36] Microstructure Variations in the Soft-Hard Tissue Junction of the Human Anterior Cruciate Ligament
    Zhao, Lei
    Lee, Peter V. S.
    Ackland, David C.
    Broom, Neil D.
    Thambyah, Ashvin
    ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2017, 300 (09): : 1547 - 1559
  • [37] Anterior cruciate ligament rupture
    Schalk, T.
    von der Linden, P.
    Schnetzke, M.
    von Recum, J.
    TRAUMA UND BERUFSKRANKHEIT, 2019, 21 (02) : 111 - 120
  • [38] Reconstruction of the anterior Cruciate Ligament
    Petersen, W.
    Imhoff, A. B.
    OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE, 2014, 26 (01): : 5 - 6
  • [39] Primary revision with replasty of the anterior cruciate ligament
    Petersen, W.
    Karpinski, K.
    Bierke, S.
    Hees, T.
    Haener, M.
    OPERATIVE ORTHOPADIE UND TRAUMATOLOGIE, 2019, 31 (03): : 221 - 247
  • [40] Reconstruction of the anterior cruciate ligament
    Vaquero Martin, J.
    Calvo Haro, J. A.
    Forriol Campos, F.
    TRAUMA-SPAIN, 2008, 19 : 22 - 38