Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses

被引:11
作者
Goegele, Clemens [1 ]
Hahn, Judith [2 ]
Schulze-Tanzil, Gundula [1 ]
机构
[1] Paracelsus Med Univ, Inst Anat & Cell Biol, Prof Ernst Nathan Str 1, D-90419 Nurnberg, Germany
[2] Leibniz Inst Polymerforsch Dresden eV IPF, Workgrp Bioengn, Inst Polymers Mat, Dept Mat Engn, Hohe Str 6, D-01069 Dresden, Germany
关键词
ACL; enthesis; ligament; synovioentheseal complex knee; tissue engineering; triphasic and graded scaffold; fibrocartilage; bone-ligament interface; zonality; tidemark; FINITE-ELEMENT-ANALYSIS; TENDON-BONE INTERFACE; GROWTH-FACTOR; REGENERATION; SCAFFOLDS; FIBROCARTILAGE; INSERTION; CELLS; GRAFT; BIOMATERIALS;
D O I
10.3390/ijms24119745
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Möglichkeiten und Grenzen des „tissue engineering“ des vorderen KreuzbandesPossibilities and limits in tissue engineering of the anterior cruciate ligament
    A. Ignatius
    L. Dürselen
    Der Orthopäde, 2009, 38 : 1080 - 1086
  • [22] Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament
    Cooper, JA
    Bailey, LO
    Carter, JN
    Castiglioni, CE
    Kofron, MD
    Ko, FK
    Laurencin, CT
    BIOMATERIALS, 2006, 27 (13) : 2747 - 2754
  • [23] Compositional mapping of the mature anterior cruciate ligament-to-bone insertion
    Qu, Dovina
    Subramony, Siddarth D.
    Boskey, Adele L.
    Pleshko, Nancy
    Doty, Stephen B.
    Lu, Helen H.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2017, 35 (11) : 2513 - 2523
  • [24] Surgical Retrieval, Isolation and In vitro Expansion of Human Anterior Cruciate Ligament-derived Cells for Tissue Engineering Applications
    Gupta, Ashim
    Sharif, Kevin
    Walters, Megan
    Woods, Mia D.
    Potty, Anish
    Main, Benjamin J.
    El-Amin, Saadiq F., III
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (86):
  • [25] Oblique coronal and oblique sagittal MRI for diagnosis of anterior cruciate ligament tears and evaluation of anterior cruciate ligament remnant tissue
    Kosaka, Masahiro
    Nakase, Junsuke
    Toratani, Tatsuhiro
    Ohashi, Yoshinori
    Kitaoka, Katsuhiko
    Yamada, Hiroshi
    Komura, Koji
    Nakamura, Shinji
    Tsuchiya, Hiroyuki
    KNEE, 2014, 21 (01) : 54 - 57
  • [26] Arthroscopic reconstruction of the anterior cruciate ligament
    Bouattour, K
    Châtain, F
    Selmi, TAS
    Neyret, P
    REVUE DE CHIRURGIE ORTHOPEDIQUE ET REPARATRICE DE L APPAREIL MOTEUR, 2002, 88 (02): : 130 - 138
  • [27] Revision anterior cruciate ligament reconstruction
    Bollier, Matthew
    Arciero, Robert A.
    CURRENT ORTHOPAEDIC PRACTICE, 2010, 21 (01): : 4 - 10
  • [28] Biomimetic tissue-engineered anterior cruciate ligament replacement
    Cooper, James A., Jr.
    Sahota, Janmeet S.
    Gorum, W. Jay, II
    Carter, Janell
    Doty, Stephen B.
    Laurencin, Cato T.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) : 3049 - 3054
  • [29] Extracellular matrix content of ruptured anterior cruciate ligament tissue
    Young, Kate
    Samiric, Tom
    Feller, Julian
    Cook, Jill
    KNEE, 2011, 18 (04) : 242 - 246
  • [30] Use of supercritical carbon dioxide technology for fabricating a tissue engineering scaffold for anterior cruciate ligament repair
    Sherifi, Ines
    Bachy, Manon
    Laumonier, Thomas
    Petite, Herve
    Hannouche, Didier
    SCIENTIFIC REPORTS, 2020, 10 (01)