TURNPIKES IN FINITE MARKOV DECISION PROCESSES AND RANDOM WALK*

被引:0
|
作者
Piunovskiy, A. B. [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool, England
关键词
Markov decision process; discounted reward; average reward; random walk; stochastic knapsack problem; turnpike;
D O I
10.1137/S0040585X97T991325
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we revise the theory of turnpikes in discounted Markov decision pro-cesses, prove the turnpike theorem for the undiscounted model, and apply the results to the specific random walk.
引用
收藏
页码:123 / 149
页数:27
相关论文
共 50 条
  • [1] On optimality gaps for fuzzification in finite Markov decision processes
    Kageyama, Masayuki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2008, 11 (01) : 77 - 88
  • [2] Measuring the Distance Between Finite Markov Decision Processes
    Song, Jinhua
    Gao, Yang
    Wang, Hao
    An, Bo
    AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2016, : 468 - 476
  • [3] MARKOV DECISION PROCESSES ON FINITE SPACES WITH FUZZY TOTAL REWARDS
    Carrero-Vera, Karla
    Cruz-Suarez, Hugo
    Montes-de-Oca, Raul
    KYBERNETIKA, 2022, 58 (02) : 180 - 199
  • [4] On the controller synthesis for finite-state Markov decision processes
    Kucera, Antonin
    Strazovsky, Oldrich
    FUNDAMENTA INFORMATICAE, 2008, 82 (1-2) : 141 - 153
  • [5] Markov Decision Processes on Borel Spaces with Total Cost and Random Horizon
    Hugo Cruz-Suárez
    Rocio Ilhuicatzi-Roldán
    Raúl Montes-de-Oca
    Journal of Optimization Theory and Applications, 2014, 162 : 329 - 346
  • [6] Markov Decision Processes on Borel Spaces with Total Cost and Random Horizon
    Cruz-Suarez, Hugo
    Ilhuicatzi-Roldan, Rocio
    Montes-de-Oca, Raul
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (01) : 329 - 346
  • [7] Mean Field Markov Decision Processes
    Baeuerle, Nicole
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [8] Mean Field Markov Decision Processes
    Nicole Bäuerle
    Applied Mathematics & Optimization, 2023, 88
  • [9] Markov Decision Processes
    Bäuerle N.
    Rieder U.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2010, 112 (4) : 217 - 243
  • [10] Uniqueness and stability of optimal policies of finite state Markov decision processes
    Leizarowitz, Arie
    Zaslavski, Alexander J.
    MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (01) : 156 - 167