Fixed-point group conjugacy classes of unipotent elements in low-dimensional symmetric spaces of special linear groups over a finite field

被引:1
作者
Buell, Catherine [1 ]
Helminck, Aloysius [2 ]
Klima, Vicky [3 ]
Schaefer, Jennifer [4 ]
Wright, Carmen [5 ]
Ziliak, Ellen [6 ]
机构
[1] Fitchburg State Univ, Dept Math, 160 Pearl St, Fitchburg, MA 01420 USA
[2] Univ Hawaii Manoa, Coll Nat Sci, 2565 McCarthy Mall, Honolulu, HI 96822 USA
[3] Appalachian State Univ, Dept Math Sci, 121 Bodenheimer Dr Boone, North Carolina, NC 28608 USA
[4] Dickinson Coll, Dept Math & Comp Sci, 28 North Coll St, Carlisle, PA 17013 USA
[5] Jackson State Univ, Dept Math & Stat Sci, POB 17610, Jackson, MS USA
[6] Benedictine Univ, Dept Math & Computat Sci, Birck Hall Sci Room 1355700 Coll Rd, Lisle, IL 60532 USA
关键词
Unipotent; generalized symmetric space; special linear group; orbits; finite fields; INVOLUTIONS; SL(N; K);
D O I
10.1142/S0219498824501421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize and classify the orbits of the fixed-point group on the unipotent elements of the generalized symmetric spaces for inner involutions of SL3(k) and SL4(k) where k is a finite field of odd characteristic. We provide some generalized results for SLn(k).
引用
收藏
页数:27
相关论文
共 22 条
[1]  
Aliakseyeu R., COUNTING GEN EXTENDE
[2]  
[Anonymous], 1985, Algebraic groups and related topics, P525
[3]  
Berger M., 1957, Ann. Sci. Ecole Norm. Sup.(3), P85, DOI [10.24033/asens.1054, DOI 10.24033/ASENS.1054]
[4]   On orbit closures of symmetric subgroups in flag varieties [J].
Brion, M ;
Helminck, AG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (02) :265-292
[5]   Classifying the orbits of the generalized symmetric spaces for SL2(Fq) [J].
Buell, C. ;
Helminck, A. ;
Klima, V. ;
Schaefer, J. ;
Wright, C. ;
Ziliak, E. .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) :1744-1757
[6]  
Buell C, 2017, NOTE MAT, V37, P1, DOI 10.1285/i15900932v37n2p1
[7]   On the structure of generalized symmetric spaces of SLn(Fq) [J].
Buell, C. ;
Helminck, A. ;
Klima, V. ;
Schaefer, J. ;
Wright, C. ;
Ziliak, E. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (12) :5123-5136
[8]  
Buell C., 2018, Advances in the Mathematical Sciences, P69, DOI [10.1007/978-3-319-98684-5, DOI 10.1007/978-3-319-98684-5]
[9]  
Cartan E., 1926, Bull. Soc. Math. France, V54, P214, DOI [10.24033/bsmf.1105, DOI 10.24033/BSMF.1105]
[10]  
Cartan E., 1927, Bull. Soc. Math. France, V55, P114, DOI DOI 10.24033/BSMF.1113