Unsupervised machine learning methods and emerging applications in healthcare

被引:54
|
作者
Eckhardt, Christina M. [1 ]
Madjarova, Sophia J. [2 ,3 ]
Williams, Riley J. [2 ,3 ]
Ollivier, Mattheu [4 ]
Karlsson, Jon [5 ]
Pareek, Ayoosh [2 ,3 ]
Nwachukwu, Benedict U. [2 ,3 ]
机构
[1] Columbia Univ, Dept Med, Coll Phys & Surg, Div Pulm Allergy & Crit Care Med,Irving Med Ctr, New York, NY USA
[2] Hosp Special Surg, Dept Orthoped Surg & Sports Med, 535 East 70th St, New York, NY 10021 USA
[3] Hosp Special Surg, Dept Orthoped Surg & Sports Med, Shoulder Serv, 535 East 70th St, New York, NY 10021 USA
[4] Aix Marseille Univ, Inst Movement & Appareil Locomoteur, Marseille, France
[5] Gothenburg Univ, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Dept Orthopaed, Gothenburg, Sweden
关键词
Machine learning; Editorial; Artificial intelligence; Computational models; Analytics; ALGORITHMS;
D O I
10.1007/s00167-022-07233-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Unsupervised machine learning methods are important analytical tools that can facilitate the analysis and interpretation of high-dimensional data. Unsupervised machine learning methods identify latent patterns and hidden structures in high-dimensional data and can help simplify complex datasets. This article provides an overview of key unsupervised machine learning techniques including K-means clustering, hierarchical clustering, principal component analysis, and factor analysis. With a deeper understanding of these analytical tools, unsupervised machine learning methods can be incorporated into health sciences research to identify novel risk factors, improve prevention strategies, and facilitate delivery of personalized therapies and targeted patient care.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [41] THE MISSING LINK OF MACHINE LEARNING IN HEALTHCARE
    Ibanga, Diana-Abasi
    Peppe, Sara
    BALKAN JOURNAL OF PHILOSOPHY, 2022, 14 (01) : 11 - 22
  • [42] Evaluation of Machine Learning Architectures in Healthcare
    Verma, Yash
    Tayeb, Shahab
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1377 - 1382
  • [43] Analytics of Machine Learning in Healthcare Industries
    Deora, Mahipal Singh
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 1 - 10
  • [44] Radiomics and Machine Learning in Oral Healthcare
    Leite, Andre Ferreira
    Vasconcelos, Karla de Faria
    Willems, Holger
    Jacobs, Reinhilde
    PROTEOMICS CLINICAL APPLICATIONS, 2020, 14 (03)
  • [45] Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening
    Omta, Wienand A.
    van Heesbeen, Roy G.
    Shen, Ian
    de Nobel, Jacob
    Robers, Desmond
    van Der Velden, Lieke M.
    Medema, Rene H.
    Siebes, Arno P. J. M.
    Feelders, Ad J.
    Brinkkemper, Sjaak
    Klumpermanl, Judith S.
    Spruit, Marco Rene
    Brinkhuis, Matthieu J. S.
    Egan, David A.
    SLAS DISCOVERY, 2020, 25 (06) : 655 - 664
  • [46] Classification of Users of a Health Service Provider Using Unsupervised Machine Learning Methods
    Arango-Abella M.D.
    Figueroa-García J.C.
    SN Computer Science, 5 (5)
  • [47] Clustering honey samples with unsupervised machine learning methods using FTIR data
    Avcu, Fatih M.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96 (01):
  • [48] Unsupervised machine and deep learning methods for structural damage detection: A comparative study
    Wang, Zilong
    Cha, Young-Jin
    ENGINEERING REPORTS, 2022,
  • [49] Machine Learning Advances in Microbiology: A Review of Methods and Applications
    Jiang, Yiru
    Luo, Jing
    Huang, Danqing
    Liu, Ya
    Li, Dan-dan
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [50] Constructing Skeleton for Parallel Applications with Machine Learning Methods
    Zhang, Zihang
    Sun, Jingwei
    Zhang, Jiepeng
    Qin, Yuze
    Sun, Guangzhong
    PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS (ICPP 2019), 2019,