Unsupervised machine learning methods and emerging applications in healthcare

被引:54
|
作者
Eckhardt, Christina M. [1 ]
Madjarova, Sophia J. [2 ,3 ]
Williams, Riley J. [2 ,3 ]
Ollivier, Mattheu [4 ]
Karlsson, Jon [5 ]
Pareek, Ayoosh [2 ,3 ]
Nwachukwu, Benedict U. [2 ,3 ]
机构
[1] Columbia Univ, Dept Med, Coll Phys & Surg, Div Pulm Allergy & Crit Care Med,Irving Med Ctr, New York, NY USA
[2] Hosp Special Surg, Dept Orthoped Surg & Sports Med, 535 East 70th St, New York, NY 10021 USA
[3] Hosp Special Surg, Dept Orthoped Surg & Sports Med, Shoulder Serv, 535 East 70th St, New York, NY 10021 USA
[4] Aix Marseille Univ, Inst Movement & Appareil Locomoteur, Marseille, France
[5] Gothenburg Univ, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Dept Orthopaed, Gothenburg, Sweden
关键词
Machine learning; Editorial; Artificial intelligence; Computational models; Analytics; ALGORITHMS;
D O I
10.1007/s00167-022-07233-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Unsupervised machine learning methods are important analytical tools that can facilitate the analysis and interpretation of high-dimensional data. Unsupervised machine learning methods identify latent patterns and hidden structures in high-dimensional data and can help simplify complex datasets. This article provides an overview of key unsupervised machine learning techniques including K-means clustering, hierarchical clustering, principal component analysis, and factor analysis. With a deeper understanding of these analytical tools, unsupervised machine learning methods can be incorporated into health sciences research to identify novel risk factors, improve prevention strategies, and facilitate delivery of personalized therapies and targeted patient care.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [1] Unsupervised machine learning methods and emerging applications in healthcare
    Christina M. Eckhardt
    Sophia J. Madjarova
    Riley J. Williams
    Mattheu Ollivier
    Jón Karlsson
    Ayoosh Pareek
    Benedict U. Nwachukwu
    Knee Surgery, Sports Traumatology, Arthroscopy, 2023, 31 : 376 - 381
  • [2] Emerging applications of machine learning in genomic medicine and healthcare
    Chafai, Narjice
    Bonizzi, Luigi
    Botti, Sara
    Badaoui, Bouabid
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2023, : 140 - 163
  • [3] Applications of machine learning in healthcare
    Aracena, Claudio
    Villena, Fabian
    Arias, Felipe
    Dunstan, Jocelyn
    REVISTA MEDICA CLINICA LAS CONDES, 2022, 33 (06): : 568 - 575
  • [4] Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications
    Ullah, Ubaid
    Garcia-Zapirain, Begonya
    IEEE ACCESS, 2024, 12 : 11423 - 11450
  • [5] Machine learning applications in healthcare sector: An overview
    Verma, Virendra Kumar
    Verma, Savita
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 2144 - 2147
  • [6] Identifying Ethical Considerations for Machine Learning Healthcare Applications
    Char, Danton S.
    Abramoff, Michael D.
    Feudtner, Chris
    AMERICAN JOURNAL OF BIOETHICS, 2020, 20 (11) : 7 - 17
  • [7] Evolution of machine learning applications in medical and healthcare analytics research: A bibliometric analysis
    Ajibade, Samuel-Soma M.
    Alhassan, Gloria Nnadwa
    Zaidi, Abdelhamid
    Oki, Olukayode Ayodele
    Awotunde, Joseph Bamidele
    Ogbuju, Emeka
    Akintoye, Kayode A.
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 24
  • [8] Emerging Applications of Machine Learning in 3D Printing
    Rojek, Izabela
    Mikolajewski, Dariusz
    Kempinski, Marcin
    Galas, Krzysztof
    Piszcz, Adrianna
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [9] Financial Fragility in Emerging Markets: Examining the Innovative Applications of Machine Learning Design Methods
    Sun, Xiyan
    Yuan, Pei
    Yao, Fengge
    Qin, Zenan
    Yang, Sijia
    Wang, Xiaomei
    JOURNAL OF THE KNOWLEDGE ECONOMY, 2024,
  • [10] Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning
    Pantanowitz, Liron
    Pearce, Thomas
    Abukhiran, Ibrahim
    Hanna, Matthew
    Wheeler, Sarah
    Soong, T. Rinda
    Tafti, Ahmad P.
    Pantanowitz, Joshua
    Lu, Ming Y.
    Mahmood, Faisal
    Gu, Qiangqiang
    Rashidi, Hooman H.
    MODERN PATHOLOGY, 2025, 38 (03)