On Explicit Formulas of Hyperbolic Matrix Functions

被引:1
作者
Laarichi, Y. [1 ]
Elkettani, Y. [2 ]
Gretete, D. [1 ]
Barmaki, M. [3 ]
机构
[1] Univ Ibn Tofail, Kenitra, Morocco
[2] Univ Ibn Tofail, Dept Math, Kenitra, Morocco
[3] Univ Hassan 2, Casablanca 20700, Morocco
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2023年 / 17卷 / 02期
关键词
matrix functions; generalized Fibonacci sequence; hyperbolic matrix functions; Fibonacci-Horner decomposition;
D O I
10.47836/mjms.17.2.08
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hyperbolic matrix functions are essential for solving hyperbolic coupled partial differential equations. In fact the best analytic-numerical approximations for resolving these equations come from the use of hyperbolic matrix functions. The hyperbolic matrix sine and cosine sh(A), ch(A) (A is an element of M-r(C)) can be calculated using numerous different techniques. In this article we derive some explicit formulas of sh(tA) and ch(tA) (t is an element of R) using the Fibonacci-Horner and the polynomial decomposition, these decompositions are calculated using the generalized Fibonacci sequences combinatorial properties in the algebra of square matrices. Finally we introduce a third approach based on the homogeneous linear differential equations. And we provide some examples to illustrate your methods.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 17 条
[1]   On explicit formulas for the principal matrix logarithm [J].
Abderraman Marrero, J. ;
Ben Taher, R. ;
Rachidi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 :142-148
[2]  
Aloev RD, 2016, MALAYS J MATH SCI, V10, P49
[3]  
Aloui A, 2021, INT J MATH COMPUT SC, V16, P613
[4]  
Anderson D. R., 1997, PAN AM MATH J, V7, P39
[5]  
[Anonymous], 2014, IN PRESS, DOI DOI 10.1007/978-3-319-05365-3_56
[6]   On the matrix pth root functions and generalized Fibonacci sequences [J].
Ben Taher, Rajae ;
El Khatabi, Youness ;
Rachidi, Mustapha .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (07) :1483-1504
[7]   A Schur-Parlett algorithm for computing matrix functions [J].
Davies, PI ;
Higham, NJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :464-485
[8]   Solving engineering models using hyperbolic matrix functions [J].
Defez, Emilio ;
Sastre, Jorge ;
Ibanez, Javier ;
Peinado, Jesus .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (04) :2837-2844
[9]   Advances in the Approximation of the Matrix Hyperbolic Tangent [J].
Ibanez, Javier ;
Alonso, Jose M. ;
Sastre, Jorge ;
Defez, Emilio ;
Alonso-Jorda, Pedro .
MATHEMATICS, 2021, 9 (11)
[10]   Constructive solution of strongly coupled continuous hyperbolic mixed problems [J].
Jódar, L ;
Navarro, E ;
Posso, AE ;
Casabán, MC .
APPLIED NUMERICAL MATHEMATICS, 2003, 47 (3-4) :477-492