GRADINGS ON BLOCK-TRIANGULAR MATRIX ALGEBRAS

被引:4
作者
Diniz, Diogo [1 ]
Da Silva, Jose Lucas Galdino [1 ]
Koshlukov, Plamen [2 ]
机构
[1] Univ Fed Campina Grande UFCG, Unidade Academ Matemat, BR-58429970 Campina Grande, PB, Brazil
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Graded algebras; block-triangular matrix algebras; Jacobson radical; CODIMENSION GROWTH;
D O I
10.1090/proc/16586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Upper triangular, and more generally, block-triangular matrices, are rather important in Linear Algebra, and also in Ring theory, namely in the theory of PI algebras (algebras that satisfy polynomial identities). The group gradings on such algebras have been extensively studied during the last decades. In this paper we prove that for any group grading on a block-triangular matrix algebra, over an arbitrary field, the Jacobson radical is a graded (homogeneous) ideal. As noted by F. Yasumura [Arch. Math. (Basel) 110 (2018), pp. 327-332] this yields the classification of the group gradings on these algebras and confirms a conjecture made by A. Valenti and M. Zaicev [Arch. Math. (Basel) 89 (2007), pp. 33-40].
引用
收藏
页码:119 / 127
页数:9
相关论文
共 17 条
  • [1] ON THE CODIMENSION GROWTH OF G-GRADED ALGEBRAS
    Aljadeff, Eli
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) : 2311 - 2320
  • [2] Group gradings on matrix algebras
    Bahturin, YA
    Zaicev, MV
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04): : 499 - 508
  • [3] Group gradings on associative algebras
    Bahturin, YA
    Sehgal, SK
    Zaicev, MV
    [J]. JOURNAL OF ALGEBRA, 2001, 241 (02) : 677 - 698
  • [4] STRUCTURAL MATRIX ALGEBRAS, GENERALIZED FLAGS, AND GRADINGS
    Besleaga, F.
    Dascalescu, S.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 6863 - 6885
  • [5] GROUP-GRADED RINGS, SMASH PRODUCTS, AND GROUP-ACTIONS
    COHEN, M
    MONTGOMERY, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) : 237 - 258
  • [6] Gradings on the algebra of upper triangular matrices and their graded identities
    Di Vincenzo, OM
    Koshlukov, P
    Valenti, A
    [J]. JOURNAL OF ALGEBRA, 2004, 275 (02) : 550 - 566
  • [7] Elduque Alberto, 2013, Mathematical Surveys and Monographs, V189, DOI [10.1090/surv/189, DOI 10.1090/SURV/189]
  • [8] Codimension growth and minimal superalgebras
    Giambruno, A
    Zaicev, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) : 5091 - 5117
  • [9] Minimal varieties of algebras of exponential growth
    Giambruno, A
    Zaicev, M
    [J]. ADVANCES IN MATHEMATICS, 2003, 174 (02) : 310 - 323
  • [10] Karpilovsky G., 1987, North-Holland Mathematics Studies, 142, Notas de Matemtica Mathematical Notes, P118